Abstract
Human motoneurones are known to discharge with a physiological variability of ~25% during voluntary contractions. Using microstimulation of single human motor axons, we have previously shown that delivering brief trains (10 pulses) of irregular stimuli, which incorporate discharge variability, generates greater contractile responses than trains of regular stimuli with identical mean frequency but zero variability. We tested the hypothesis that longer irregular (physiological) trains would produce greater contractile responses than regular (nonphysiological) trains of the same mean frequency (18 Hz) and duration (45 sec). Tungsten microelectrodes were inserted into the common peroneal nerve of human subjects, and single motor axons supplying the toe extensors (n = 14) were isolated. Irregular trains of stimuli showed greater contractile responses over identical mean frequencies in both fatigue-resistant and fatigable motor units, but because the forces were higher the rate of decline was higher. Nevertheless, forces produced by the irregular trains were significantly higher than those produced by the regular trains. We conclude that discharge irregularity augments force production during long as well as short trains of stimulation.
Original language | English |
---|---|
Article number | e13067 |
Number of pages | 7 |
Journal | Physiological Reports |
Volume | 5 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2017 |
Open Access - Access Right Statement
© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Keywords
- axons
- motor neurons