TY - JOUR
T1 - MnB2 nanosheet and nanotube: stability, electronic structures, novel functionalization and application for Li-ion batteries
AU - Zhang, Bingwen
AU - Fan, Lele
AU - Hu, Jingsan
AU - Gu, Jianfei
AU - Wang, Baolin
AU - Zhang, Qinfang
PY - 2019
Y1 - 2019
N2 - In this paper, two kinds of two-dimensional manganese boride monolayers, h-MnB2 and t-MnB2, are predicted to be stable metallic nanosheets, which exhibit favorable mechanical and thermal properties. The Young's moduli of h-MnB2 and t-MnB2 are 77.73 N m-1 and 59.59 N m-1, respectively. Ab initio molecular dynamics results show that h-MnB2 and t-MnB2 can sustain up to 500 K and 1000 K, respectively. The magnetic property of h-MnB2 is frustrated antiferromagnetic with a Néel temperature of about 25 K, and the magnetic property of t-MnB2 is collinear antiferromagnetic with a Néel temperature of about 317 K. In addition, the electronic structure of the h-MnB2 monolayer can be tuned by passivation to exhibit Dirac states. h-MnB2 can also self-assemble to form nanotubes, and is thus very promising for application as the anode for Li-ion batteries because of its high capacity (about 875 mA h g-1), low diffusion barrier (about 0.03 eV) and strong stability.
AB - In this paper, two kinds of two-dimensional manganese boride monolayers, h-MnB2 and t-MnB2, are predicted to be stable metallic nanosheets, which exhibit favorable mechanical and thermal properties. The Young's moduli of h-MnB2 and t-MnB2 are 77.73 N m-1 and 59.59 N m-1, respectively. Ab initio molecular dynamics results show that h-MnB2 and t-MnB2 can sustain up to 500 K and 1000 K, respectively. The magnetic property of h-MnB2 is frustrated antiferromagnetic with a Néel temperature of about 25 K, and the magnetic property of t-MnB2 is collinear antiferromagnetic with a Néel temperature of about 317 K. In addition, the electronic structure of the h-MnB2 monolayer can be tuned by passivation to exhibit Dirac states. h-MnB2 can also self-assemble to form nanotubes, and is thus very promising for application as the anode for Li-ion batteries because of its high capacity (about 875 mA h g-1), low diffusion barrier (about 0.03 eV) and strong stability.
UR - https://hdl.handle.net/1959.7/uws:66229
U2 - 10.1039/c9nr00952c
DO - 10.1039/c9nr00952c
M3 - Article
SN - 2040-3372
SN - 2040-3364
VL - 11
SP - 7857
EP - 7865
JO - Nanoscale
JF - Nanoscale
IS - 16
ER -