Modelling of stress distribution and fracture in dental occlusal fissures

Boyang Wan, Mahdi Shahmoradi, Zhongpu Zhang, Yo Shibata, Babak Sarrafpour, Michael Swain, Qing Li

Research output: Contribution to journalArticlepeer-review

Abstract

The aim of this study was to investigate the fracture behaviour of fissural dental enamel under simulated occlusal load in relation to various interacting factors including fissure morphology, cuspal angle and the underlying material properties of enamel. Extended finite element method (XFEM) was adopted here to analyse the fracture load and crack length in tooth models with different cusp angles (ranging from 50° to 70° in 2.5° intervals), fissural morphologies (namely U shape, V shape, IK shape, I shape and Inverted-Y shape) and enamel material properties (constant versus graded). The analysis results showed that fissures with larger curved morphology, such as U shape and IK shape, exhibit higher resistance to fracture under simulated occlusal load irrespective of cusp angle and enamel properties. Increased cusp angle (i.e. lower cusp steepness), also significantly enhanced the fracture resistance of fissural enamel, particularly for the IK and Inverted-Y shape fissures. Overall, the outcomes of this study explain how the interplay of compositional and structural features of enamel in the fissural area contribute to the resistance of the human tooth against masticatory forces. These findings may provide significant indicators for clinicians and technicians in designing/fabricating extra-coronal dental restorations and correcting the cuspal inclinations and contacts during clinical occlusal adjustment.
Original languageEnglish
Article number4682
Number of pages10
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019

Open Access - Access Right Statement

© The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Keywords

  • dental caries
  • dental enamel
  • fractures
  • strains and stresses

Fingerprint

Dive into the research topics of 'Modelling of stress distribution and fracture in dental occlusal fissures'. Together they form a unique fingerprint.

Cite this