Abstract
The performance of the independent modal space control (IMSC) algorithm for structural vibration control is examined in this paper. Both the theoretical analysis and numerical simulation show that, for a multi-degree-of-freedom system, the modal control forces may increase the contributions of the vibration of higher modes (uncontrolled modes) to the system response if the IMSC algorithm is used to design a structural control system. Therefore, the responses of the controlled structure may be underestimated if the effects of control forces on the higher modes are not considered in the response analysis. A new control algorithmâ€â€modified independent modal space control (MIMSC) algorithm is proposed in this paper for eliminating the effect of modal control force on the uncontrolled modes. Numerical example shows that the structural responses can be effectively reduced when control system design is carried out based on the proposed algorithm. By comparing the simulated results obtained by the IMSC and MIMSC algorithms, it is found that, in order to achieve the same control objective, the proposed algorithm is more effective than IMSC since the modal control forces do not have any effect on the uncontrolled modes. In order to verify the effectiveness of the proposed algorithm, a practical exampleâ€â€active control design of UCLA Math-Science Building is presented and discussed.
Original language | English |
---|---|
Journal | Journal of Sound and Vibration |
Publication status | Published - 2003 |
Keywords
- (IMSC) algorithm
- independent modal space control algorithm
- modal control force
- structural dynamics