Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds

Isabel Denzer, Gerald Münch, Kristina Friedland

    Research output: Contribution to journalArticlepeer-review

    85 Citations (Scopus)

    Abstract

    Oxidative stress and mitochondrial dysfunction are early events in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Mitochondria are important key players in cellular function based on mitochondrial energy production and their major role in cell physiology. Since neurons are highly depending on mitochondrial energy production due to their high energy demand and their reduced glycolytic capacity mitochondrial dysfunction has fatal consequences for neuronal function and survival. The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) is the major regulator of cellular response to oxidative stress. Activation of Nrf2 induces the transcriptional regulation of antioxidant response element (ARE)-dependent expression of a battery of cytoprotective and antioxidant enzymes and proteins. Moreover, activation of Nrf2 protects mitochondria from dysfunction and promotes mitochondrial biogenesis. Therefore, the Nrf2/ARE pathway has become an attractive target for the prevention and treatment of oxidative stress-related neurodegenerative diseases. Small food-derived inducers of the Nrf2/ARE pathway including l-sulforaphane from broccoli and isoliquiritigenin from licorice displayed promising protection of mitochondrial function in models of oxidative stress and neurodegenerative diseases and represent a novel approach to prevent and treat aging-associated neurodegenerative diseases.
    Original languageEnglish
    Pages (from-to)80-94
    Number of pages15
    JournalPharmacological Research
    Volume103
    DOIs
    Publication statusPublished - 2016

    Keywords

    • aging
    • degeneration
    • mitochondrial pathology
    • nervous system
    • nutrition
    • oxidative stress

    Fingerprint

    Dive into the research topics of 'Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds'. Together they form a unique fingerprint.

    Cite this