TY - JOUR
T1 - Molecular design of an electropolymerized copolymer with carboxylic and sulfonic acid functionalities
AU - Gu, Modi
AU - Travaglini, Lorenzo
AU - Hopkins, Jonathan
AU - Ta, Daniel
AU - Lauto, Antonio
AU - Wagner, Pawel
AU - Wagner, Klaudia
AU - Zeglio, Erica
AU - Jephcott, Lilli
AU - Officer, David L.
AU - Mawad, Damia
PY - 2022
Y1 - 2022
N2 - Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most researched conjugated polymer in the field of organic bioelectronics. The conjugated PEDOT backbone features good redox stability in aqueous electrolyte, and low oxidation potential. However, PEDOT:PSS has two major drawbacks. The PEDOT backbone lacks biofunctionality, limiting the fine tuning of its interface with the biological environment. The dopant PSS is insulating, resulting in a decrease in the capacitance of the polymer. Here, we describe the design of a random copolymer, P(EDOTCOOH-co-EDOTS), based on EDOT monomers functionalized with sulfonic and carboxylic acid groups. The copolymer was successfully synthesized by electropolymerization as confirmed by Xray photoelectron spectroscopy. Contact angle measurements illustrated the high hydrophilicity of the P (EDOTCOOH-co-EDOTS) (28 ± 6º), attributed to the sulfonate group in the side chains. This in turn led to a higher water penetration into the copolymer film, enhancing significantly its volumetric capacitance (69 ± 4 F cm− 3 ), and thereby, its performance when used as an active channel in an organic electrochemical transistor. Of note, we incorporated the sulfonate group in its sodium salt form retaining its highly ionized properties. This is the first instance of utilizing an uncapped, ionized sulfonate group covalently bound to the backbone of a polymer, where the resultant polymer is oxidized at very low potentials, as well as stable and electroactive in aqueous electrolytes. Furthermore, our molecular design to incorporate carboxylic acid groups paves the way for the development of conjugated polymers that can be tailored for bioelectronic applications.
AB - Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most researched conjugated polymer in the field of organic bioelectronics. The conjugated PEDOT backbone features good redox stability in aqueous electrolyte, and low oxidation potential. However, PEDOT:PSS has two major drawbacks. The PEDOT backbone lacks biofunctionality, limiting the fine tuning of its interface with the biological environment. The dopant PSS is insulating, resulting in a decrease in the capacitance of the polymer. Here, we describe the design of a random copolymer, P(EDOTCOOH-co-EDOTS), based on EDOT monomers functionalized with sulfonic and carboxylic acid groups. The copolymer was successfully synthesized by electropolymerization as confirmed by Xray photoelectron spectroscopy. Contact angle measurements illustrated the high hydrophilicity of the P (EDOTCOOH-co-EDOTS) (28 ± 6º), attributed to the sulfonate group in the side chains. This in turn led to a higher water penetration into the copolymer film, enhancing significantly its volumetric capacitance (69 ± 4 F cm− 3 ), and thereby, its performance when used as an active channel in an organic electrochemical transistor. Of note, we incorporated the sulfonate group in its sodium salt form retaining its highly ionized properties. This is the first instance of utilizing an uncapped, ionized sulfonate group covalently bound to the backbone of a polymer, where the resultant polymer is oxidized at very low potentials, as well as stable and electroactive in aqueous electrolytes. Furthermore, our molecular design to incorporate carboxylic acid groups paves the way for the development of conjugated polymers that can be tailored for bioelectronic applications.
UR - https://hdl.handle.net/1959.7/uws:68423
U2 - 10.1016/j.synthmet.2022.117029
DO - 10.1016/j.synthmet.2022.117029
M3 - Article
SN - 0379-6779
VL - 285
JO - Synthetic Metals
JF - Synthetic Metals
M1 - 117029
ER -