Abstract
Porous functional materials play important roles in a wide variety of growing research and industrial fields. We herein report a simple, effective method to prepare porous functional graphene composites for multi-field applications. Graphene sheets were non-chemically modified by Triton®X-100, not only to maintain high structural integrity but to improve the dispersion of graphene on the pore surface of a sponge. It was found that a graphene/sponge nanocomposite at 0.79 wt.% demonstrated ideal electrical conductivity. The composite materials have high strain sensitivity, stable fatigue performance for 20 000 cycles, short response time of 0.401 s and fast response to temperature and pressure. In addition, the composites are effective in monitoring materials deformation and acoustic attenuation with a maximum absorption rate 67.78% and it can be used as electrodes for a supercapacitor with capacitance of 18.1 F g-1. Moreover, no expensive materials or complex equipment are required for the composite manufacturing process. This new methodology for the fabrication of multifunctional, durable and highly conductive graphene/sponge nanocomposites hold promise for many other applications.
Original language | English |
---|---|
Article number | 465502 |
Number of pages | 15 |
Journal | Nanotechnology |
Volume | 31 |
Issue number | 46 |
DOIs | |
Publication status | Published - 13 Nov 2020 |
Bibliographical note
Publisher Copyright:© 2020 IOP Publishing Ltd.
Keywords
- graphene
- nanocomposites (materials)
- porous materials
- sponges