Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the origin on the phase plane

Zhigang Zeng, Wei Xing Zheng

    Research output: Contribution to journalArticlepeer-review

    112 Citations (Scopus)

    Abstract

    In this paper, we investigate multistability of two kinds of recurrent neural networks with time-varying delays and activation functions symmetrical about the origin on the phase plane. One kind of activation function is with zero slope at the origin on the phase plane, while the other is with nonzero slope at the origin on the phase plane. We derive sufficient conditions under which these two kinds of n-dimensional recurrent neural networks are guaranteed to have (2m+1)n equilibrium points, with (m+1)n of them being locally exponentially stable. These new conditions improve and extend the existing multistability results for recurrent neural networks. Finally, the validity and performance of the theoretical results are demonstrated through two numerical examples.
    Original languageEnglish
    Pages (from-to)1749-1762
    Number of pages14
    JournalIEEE Transactions on Neural Networks and Learning Systems
    Volume24
    Issue number11
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the origin on the phase plane'. Together they form a unique fingerprint.

    Cite this