TY - JOUR
T1 - Nanojoint formation between ceramic titanate nanowires and spot melting of metal nanowires with electron beam
AU - Bo, Arixin
AU - Alarco, Jose
AU - Zhu, Huaiyong
AU - Waclawik, Eric R.
AU - Zhan, Haifei
AU - Gu, YuanTong
PY - 2017
Y1 - 2017
N2 - Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI). The irradiation fuses the contacted spot of titanate NWs yielding an intact nanojoint. Nanojoints with different morphologies can be produced. The joint structures consist of titanium dioxide (TiO2) rutile, anatase, and titanate phases in the direction away from the e-beam melting spot. The titanate binds to anatase via a crystallographic matching coherent interface (the oxygen atoms at the interface are shared by the two phases) and the anatase solidly binds to the rutile joint. The resulting rutile joint is stable at high temperatures. Additionally, it is demonstrated that the heat production from EBI treated rutile can be utilized to break metal NWs (Ag, Cu, and Ni) apart by spot melting. The required e-beam intensity is considerably mild (75 pA/cm2) which allows visual access and control over the NW melting. Direct melting of Ag and Cu is not applicable under EBI due to their high thermal conductivity even with high current density (500 pA/cm2). Our findings reveal that ceramic nanojoint formation and spot melting at nanoscale are applicable if the properties of nanomaterials are understood and properly utilized.
AB - Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI). The irradiation fuses the contacted spot of titanate NWs yielding an intact nanojoint. Nanojoints with different morphologies can be produced. The joint structures consist of titanium dioxide (TiO2) rutile, anatase, and titanate phases in the direction away from the e-beam melting spot. The titanate binds to anatase via a crystallographic matching coherent interface (the oxygen atoms at the interface are shared by the two phases) and the anatase solidly binds to the rutile joint. The resulting rutile joint is stable at high temperatures. Additionally, it is demonstrated that the heat production from EBI treated rutile can be utilized to break metal NWs (Ag, Cu, and Ni) apart by spot melting. The required e-beam intensity is considerably mild (75 pA/cm2) which allows visual access and control over the NW melting. Direct melting of Ag and Cu is not applicable under EBI due to their high thermal conductivity even with high current density (500 pA/cm2). Our findings reveal that ceramic nanojoint formation and spot melting at nanoscale are applicable if the properties of nanomaterials are understood and properly utilized.
KW - electron beams
KW - nanostructured materials
KW - nanowires
KW - thermal conductivity
KW - titanates
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:44540
U2 - 10.1021/acsami.6b16237
DO - 10.1021/acsami.6b16237
M3 - Article
SN - 1944-8244
VL - 9
SP - 9143
EP - 9151
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 10
ER -