Network intrusion detection based on LDA for payload feature selection

Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda

    Research output: Chapter in Book / Conference PaperConference Paperpeer-review

    20 Citations (Scopus)

    Abstract

    ![CDATA[Anomaly Intrusion Detection System (IDS) is a statistical based network IDS which can detect attack variants and novel attacks without a priori knowledge. Current anomaly IDSs are inefficient for real-time detection because of their complex computation. This paper proposes a novel approach to reduce the heavy computational cost of an anomaly IDS. Linear Discriminant Analysis (LDA) and difference distance map are used for selection of significant features. This approach is able to transform high-dimensional feature vectors into a low-dimensional domain. The similarity between new incoming packets and a normal profile is determined using Euclidean distance on the simple, low-dimensional feature domain. The final decision will be made according to a pre-calculated threshold to differentiate normal and abnormal network packets. The proposed approach is evaluated using DARPA 1999 IDS dataset.]]
    Original languageEnglish
    Title of host publication2010 IEEE Globecom Workshop on Web and Pervasive Security: 6-10 December 2010, Miami, Florida
    PublisherIEEE
    Pages1545-1549
    Number of pages5
    ISBN (Print)9781424488650
    DOIs
    Publication statusPublished - 2010
    EventIEEE Globecom Workshops -
    Duration: 6 Dec 2010 → …

    Conference

    ConferenceIEEE Globecom Workshops
    Period6/12/10 → …

    Fingerprint

    Dive into the research topics of 'Network intrusion detection based on LDA for payload feature selection'. Together they form a unique fingerprint.

    Cite this