TY - JOUR
T1 - Nitrous oxide emission from agricultural soils : application of animal manure or biochar? : a global meta-analysis
AU - Shakoor, Awais
AU - Shahzad, Sher Muhammad
AU - Chatterjee, Nilovna
AU - Arif, Muhammad Saleem
AU - Farooq, Taimoor Hassan
AU - Altaf, Muhammad Mohsin
AU - Tufail, Muhammad Aammar
AU - Dar, Afzal Ahmed
AU - Mehmood, Tariq
PY - 2021
Y1 - 2021
N2 - Organic amendments (animal manure and biochar) to agricultural soils may enhance soil organic carbon (SOC) contents, improve soil fertility and crop productivity but also contribute to global warming through nitrous oxide (N2O) emission. However, the effects of organic amendments on N2O emissions from agricultural soils seem variable among numerous research studies and remains uncertain. Here, eighty-five publications (peer-reviewed) were selected to perform a meta-analysis study. The results of this meta-analysis study show that the application of animal manure enhanced N2O emissions by 17.7%, whereas, biochar amendment significantly mitigated N2O emissions by 19.7%. Moreover, coarse textured soils increased [lnRR‾ = 182.6%, 95% confidence interval (CI) = 151.4%, 217.7%] N2O emission after animal manure, in contrast, N2O emission mitigated by 7.0% from coarse textured soils after biochar amendment. In addition, this study found that 121–320 kg N ha−1 and ⩽ 30 T ha−1 application rates of animal manure and biochar mitigated N2O emissions by 72.3% and 22.5%, respectively. Soil pH also played a vital role in regulating the N2O emissions after organic amendments. Furthermore, > 10 soil C: N ratios increased N2O emissions by 121.4% and 27.6% after animal and biochar amendments, respectively. Overall, animal manure C: N ratios significantly enhanced N2O emissions, while, biochar C: N ratio had not shown any effect on N2O emissions. Overall, average N2O emission factors (EFs) for animal manure and biochar amendments were 0.46% and −0.08%, respectively. Thus, the results of this meta-analysis study provide scientific evidence about how organic amendments such as animal manure and biochar regulating the N2O emission from agricultural soils.
AB - Organic amendments (animal manure and biochar) to agricultural soils may enhance soil organic carbon (SOC) contents, improve soil fertility and crop productivity but also contribute to global warming through nitrous oxide (N2O) emission. However, the effects of organic amendments on N2O emissions from agricultural soils seem variable among numerous research studies and remains uncertain. Here, eighty-five publications (peer-reviewed) were selected to perform a meta-analysis study. The results of this meta-analysis study show that the application of animal manure enhanced N2O emissions by 17.7%, whereas, biochar amendment significantly mitigated N2O emissions by 19.7%. Moreover, coarse textured soils increased [lnRR‾ = 182.6%, 95% confidence interval (CI) = 151.4%, 217.7%] N2O emission after animal manure, in contrast, N2O emission mitigated by 7.0% from coarse textured soils after biochar amendment. In addition, this study found that 121–320 kg N ha−1 and ⩽ 30 T ha−1 application rates of animal manure and biochar mitigated N2O emissions by 72.3% and 22.5%, respectively. Soil pH also played a vital role in regulating the N2O emissions after organic amendments. Furthermore, > 10 soil C: N ratios increased N2O emissions by 121.4% and 27.6% after animal and biochar amendments, respectively. Overall, animal manure C: N ratios significantly enhanced N2O emissions, while, biochar C: N ratio had not shown any effect on N2O emissions. Overall, average N2O emission factors (EFs) for animal manure and biochar amendments were 0.46% and −0.08%, respectively. Thus, the results of this meta-analysis study provide scientific evidence about how organic amendments such as animal manure and biochar regulating the N2O emission from agricultural soils.
UR - https://hdl.handle.net/1959.7/uws:71278
U2 - 10.1016/j.jenvman.2021.112170
DO - 10.1016/j.jenvman.2021.112170
M3 - Article
SN - 0301-4797
VL - 285
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 112170
ER -