Abstract
Evidence from functional neuroimaging studies support neural differences between the Attention Deficit Hyperactivity Disorder (ADHD) presentation types. It remains unclear if these neural deficits also manifest at the structural level. We have previously shown that the ADHD combined, and ADHD inattentive types demonstrate differences in graph properties of structural covariance suggesting an underlying difference in neuroanatomical organization. The goal of this study was to examine and validate white matter brain organization between the two subtypes using both scalar and connectivity measures of brain white matter. We used both tract-based spatial statistical (TBSS) and tractography analyses with network-based Statistics (NBS) and graph-theoretical analyses in a cohort of 35 ADHD participants (aged 8–17 years) defined using DSM-IV criteria as combined (ADHD-C) type (n = 19) or as predominantly inattentive (ADHD-I) type (n = 16), and 28 matched neurotypical controls. We performed TBSS analyses on scalar measures of fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivity to assess differences in WM between ADHD types and controls. NBS and graph theoretical analysis of whole brain interregional tractography examined connectomic differences and brain network organization, respectively. None of the scalar measures significantly differed between ADHD types or relative to controls. Similarly, there were no tractography connectivity differences between the two subtypes and relative to controls using NBS. Global and regional graph measures were also similar between the groups. A single significant finding was observed for nodal degree between the ADHD-C and controls, in the right insula (corrected p = .029). Our result of no white matter differences between the subtypes is consistent with most previous findings. These findings together might suggest that the white matter structural architecture is largely similar between the DSM-based ADHD presentations is similar to the extent of being undetectable with the current cohort size.
Original language | English |
---|---|
Article number | e0245028 |
Number of pages | 16 |
Journal | PLoS One |
Volume | 16 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2021 |