TY - JOUR
T1 - Noise-reducing algorithms do not necessarily provide superior dose optimisation for hepatic lesion detection with multidetector CT
AU - Dobeli, K. L.
AU - Lewis, S. J.
AU - Meikle, S. R.
AU - Thiele, D. L.
AU - Brennan, P. C.
PY - 2013
Y1 - 2013
N2 - Objective: To compare the doseoptimisation potential of a smoothing filtered backprojection (FBP) and a hybrid FBP/iterative algorithm to that of a standard FBP algorithm at three slice thicknesses for hepatic lesion detection with multidetector CT. Methods: A liver phantom containing a 9.5-mm opacity with a density of 10HU below background was scanned at 125, 100, 75, 50 and 25mAs. Data were reconstructed with standard FBP (B), smoothing FBP (A) and hybrid FBP/iterative (iDose4) algorithms at 5-, 3- and 1-mm collimation. 10 observers marked opacities using a four-point confidence scale. Jackknife alternative freeresponse receiver operating characteristic figure of merit (FOM), sensitivity and noise were calculated. Results: Compared with the 125-mAs/5-mm setting for each algorithm, significant reductions in FOM (p,0.05) and sensitivity (p,0.05) were found for all three algorithms for all exposures at 1-mm thickness and for all slice thicknesses at 25mAs, with the exception of the 25-mAs/5-mm setting for the B algorithm. Sensitivity was also significantly reduced for all exposures at 3-mm thickness for the A algorithm (p,0.05). Noise for the A and iDose4 algorithms was approximately 13% and 21% lower, respectively, than for the B algorithm. Conclusion: Superior performance for hepatic lesion detection was not shown with either a smoothing FBP algorithm or a hybrid FBP/iterative algorithm compared with a standard FBP technique, even though noise reduction with thinner slices was demonstrated with the alternative approaches. Advances in knowledge: Reductions in image noise with non-standard CT algorithms do not necessarily translate to an improvement in low-contrast object detection.
AB - Objective: To compare the doseoptimisation potential of a smoothing filtered backprojection (FBP) and a hybrid FBP/iterative algorithm to that of a standard FBP algorithm at three slice thicknesses for hepatic lesion detection with multidetector CT. Methods: A liver phantom containing a 9.5-mm opacity with a density of 10HU below background was scanned at 125, 100, 75, 50 and 25mAs. Data were reconstructed with standard FBP (B), smoothing FBP (A) and hybrid FBP/iterative (iDose4) algorithms at 5-, 3- and 1-mm collimation. 10 observers marked opacities using a four-point confidence scale. Jackknife alternative freeresponse receiver operating characteristic figure of merit (FOM), sensitivity and noise were calculated. Results: Compared with the 125-mAs/5-mm setting for each algorithm, significant reductions in FOM (p,0.05) and sensitivity (p,0.05) were found for all three algorithms for all exposures at 1-mm thickness and for all slice thicknesses at 25mAs, with the exception of the 25-mAs/5-mm setting for the B algorithm. Sensitivity was also significantly reduced for all exposures at 3-mm thickness for the A algorithm (p,0.05). Noise for the A and iDose4 algorithms was approximately 13% and 21% lower, respectively, than for the B algorithm. Conclusion: Superior performance for hepatic lesion detection was not shown with either a smoothing FBP algorithm or a hybrid FBP/iterative algorithm compared with a standard FBP technique, even though noise reduction with thinner slices was demonstrated with the alternative approaches. Advances in knowledge: Reductions in image noise with non-standard CT algorithms do not necessarily translate to an improvement in low-contrast object detection.
UR - https://hdl.handle.net/1959.7/uws:74443
U2 - 10.1259/bjr.20120500
DO - 10.1259/bjr.20120500
M3 - Article
SN - 1748-880X
SN - 0007-1285
VL - 86
JO - British Journal of Radiology
JF - British Journal of Radiology
IS - 1023
M1 - 20120500
ER -