Non-coding RNA in pancreas and β-cell development

Wilson K. M. Wong, Anja E. Sørensen, Mugdha V. Joglekar, Anand A. Hardikar, Louise T. Dalgaard

Research output: Contribution to journalArticlepeer-review

Abstract

In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.
Original languageEnglish
Article number41
Number of pages25
JournalNon-Coding RNA
Volume4
Issue number4
DOIs
Publication statusPublished - 2018

Open Access - Access Right Statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Non-coding RNA in pancreas and β-cell development'. Together they form a unique fingerprint.

Cite this