Nonlinear analyses of porous functionally graded sandwich piezoelectric nano-energy harvesters under compressive axial loading

S. Zeng, Z. Peng, K. Wang, Baolin Wang, J. Wu, T. Luo

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

In this study, a sandwich piezoelectric nano-energy harvester model under compressive axial loading with a core layer fabricated of functionally graded (FG) porous material is presented based on the nonlocal strain gradient theory (NSGT). The von Karman type geometric nonlinearity and the axial loading were considered. The electromechanical governing equations were obtained using Hamilton’s principle. The nonlinear vibration frequencies, root mean square (RMS) voltage output and static buckling were obtained using the Galerkin method. The effects of different types of porous distribution, porosity coefficients, length scale parameters, nonlocal parameters, flexoelectricity, excitation frequencies, lumped mass and axial loads on the natural frequency and voltage output of nanobeams were investigated. Results show that the porous distributions, porosity coefficient of porous materials, the excitation frequencies and the axial load have a large effect on the natural frequency and voltage output of the sandwiched piezoelectric nanobeams. When the NSGT is considered, the critical buckling load depends on the values of the nonlocal parameters and strain gradient constants. In addition, the electromechanical conversion efficiency of the post-buckling process is significantly higher than that of the pre-buckling process. The flexoelectric effect can significantly increase the RMS voltage output of the energy harvester.
Original languageEnglish
Article number11787
Number of pages27
JournalApplied Sciences
Volume11
Issue number24
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Nonlinear analyses of porous functionally graded sandwich piezoelectric nano-energy harvesters under compressive axial loading'. Together they form a unique fingerprint.

Cite this