TY - JOUR
T1 - Numerical simulation of self-consolidating engineered cementitious composite flow with the V-funnel and U-box
AU - Thanh, Hai Tran
AU - Li, Jianchun
AU - Zhang, Y. X.
PY - 2020
Y1 - 2020
N2 - A 3D numerical model is developed in this paper to simulate the flow of self-consolidating engineered cementitious composites (SC-ECC) through the V-funnel test and U-box test. The synthetic fibres utilized in SC-ECC are considered as flexible fibres and modelled as separated particles, virtually connected by a drag force between two adjacent fibre particles. The fibre particles and mortar particles possess similar continuum properties in the domain of SC-ECC. The constitutive equations of the flow of SC-ECC are solved using the mesh-free, weakly compressible smoothed particle hydrodynamics (WCSPH). The V-funnel model focuses on the flow rate characteristic and the correlation of the dispersion of synthetic fibres with the plastic viscosity of fresh mixtures. The U-box simulation is to confirm the self-consolidating capability and the passing ability of SC-ECC flow through reinforcing bars. The simulation results of the discharge time in the V-funnel model and the self-levelling index in the U-box model agree well with experimental results from the literature, which provide convincing evidence for the correctness and effectiveness of the developed model. The proposed model thus is capable of providing insight into the flow behaviour of SC-ECC in terms of filling, passing abilities and the dispersion/orientation of flexible synthetic fibres.
AB - A 3D numerical model is developed in this paper to simulate the flow of self-consolidating engineered cementitious composites (SC-ECC) through the V-funnel test and U-box test. The synthetic fibres utilized in SC-ECC are considered as flexible fibres and modelled as separated particles, virtually connected by a drag force between two adjacent fibre particles. The fibre particles and mortar particles possess similar continuum properties in the domain of SC-ECC. The constitutive equations of the flow of SC-ECC are solved using the mesh-free, weakly compressible smoothed particle hydrodynamics (WCSPH). The V-funnel model focuses on the flow rate characteristic and the correlation of the dispersion of synthetic fibres with the plastic viscosity of fresh mixtures. The U-box simulation is to confirm the self-consolidating capability and the passing ability of SC-ECC flow through reinforcing bars. The simulation results of the discharge time in the V-funnel model and the self-levelling index in the U-box model agree well with experimental results from the literature, which provide convincing evidence for the correctness and effectiveness of the developed model. The proposed model thus is capable of providing insight into the flow behaviour of SC-ECC in terms of filling, passing abilities and the dispersion/orientation of flexible synthetic fibres.
KW - computer simulation
KW - mathematical models
KW - self-consolidating concrete
KW - textile fibres, synthetic
UR - http://hdl.handle.net/1959.7/uws:54728
U2 - 10.1016/j.conbuildmat.2019.117467
DO - 10.1016/j.conbuildmat.2019.117467
M3 - Article
SN - 0950-0618
VL - 236
JO - Construction and Building Materials
JF - Construction and Building Materials
M1 - 117467
ER -