Abstract
Short-circuiting flow is an important secondary flow in gas cyclones, which has a negative impact on the separation performance. To improve the understanding of the short-circuiting flow and guide the optimization of gas cyclones, this paper presents a numerical study of a cyclone using computational fluid dynamics. Based on the steady flow field, three methods were adopted to investigate the formation mechanism and characteristics of the short-circuiting flow and particles. The temporal variation of the tracer species concentration distribution reveals that the formation mechanism of the short-circuiting flow is the squeeze between the airflows entering the annular space of the gas cyclone at different times. The short-circuiting flow region, distinguished through the spatial distribution of the moments of age, is characterized by a small mean age and a large coefficient of variation. The proportion of the short-circuiting particles increases with the increase of the inlet velocity only for small particles. But with the increase of particle size, the proportion of the short-circuiting particles decreases faster at higher inlet velocities, resulting in significant differences in collection efficiency curves.
Original language | English |
---|---|
Pages (from-to) | 81-93 |
Number of pages | 13 |
Journal | Particuology |
Volume | 72 |
DOIs | |
Publication status | Published - Jan 2023 |
Bibliographical note
Publisher Copyright:© 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences