TY - JOUR
T1 - Occurrence of honey bee-associated pathogens in Varroa-free pollinator communities
AU - Brettell, Laura E.
AU - Riegler, Markus
AU - O'Brien, Corey
AU - Cook, James M.
PY - 2020
Y1 - 2020
N2 - Australia remains the last significant land mass free of Varroa, a parasitic mite which has caused dramatic honey bee (Apis mellifera) colony losses across the globe, due to its association with the pathogenic deformed wing virus (DWV). As such, Australia continues to maintain relatively healthy honey bee populations, despite recent work showing apiaries harbor a surprisingly high prevalence of microbial pathogens. We sought to determine the prevalence of these microbial pathogens in honey bees and native pollinators actively co-foraging on mass flowering crops and to understand the extent to which they may be shared between taxa. We found high pre-valences of black queen cell virus (BQCV) and sacbrood virus (SBV) in the honey bees (88% and 41% respectively), and correspondingly, these were the most common honey bee pathogens detected in native pollinator taxa, albeit at much lower prevalence; the maximum prevalence for any pathogen in a native pollinator group was 24% (BQCV in Halictidae spp.). The viral pathogens Israeli acute paralysis virus and Lake Sinai viruses 1 and 2, and the fungal parasites Nosema apis and Nosema ceranae, were only rarely detected. Phylogenetic analyses of the most common pathogens revealed similar genotypes circulating between species. Our data suggest that, in Australian orchards, pathogen prevalence in honey bees is a good predictor of pathogen prevalence in native pollinators, which raises concerns about how the viral landscape may change in native taxa if, or when, Varroa arrives.
AB - Australia remains the last significant land mass free of Varroa, a parasitic mite which has caused dramatic honey bee (Apis mellifera) colony losses across the globe, due to its association with the pathogenic deformed wing virus (DWV). As such, Australia continues to maintain relatively healthy honey bee populations, despite recent work showing apiaries harbor a surprisingly high prevalence of microbial pathogens. We sought to determine the prevalence of these microbial pathogens in honey bees and native pollinators actively co-foraging on mass flowering crops and to understand the extent to which they may be shared between taxa. We found high pre-valences of black queen cell virus (BQCV) and sacbrood virus (SBV) in the honey bees (88% and 41% respectively), and correspondingly, these were the most common honey bee pathogens detected in native pollinator taxa, albeit at much lower prevalence; the maximum prevalence for any pathogen in a native pollinator group was 24% (BQCV in Halictidae spp.). The viral pathogens Israeli acute paralysis virus and Lake Sinai viruses 1 and 2, and the fungal parasites Nosema apis and Nosema ceranae, were only rarely detected. Phylogenetic analyses of the most common pathogens revealed similar genotypes circulating between species. Our data suggest that, in Australian orchards, pathogen prevalence in honey bees is a good predictor of pathogen prevalence in native pollinators, which raises concerns about how the viral landscape may change in native taxa if, or when, Varroa arrives.
KW - diseases
KW - honeybee
KW - nosema
KW - pollinators
KW - viruses
UR - https://hdl.handle.net/1959.7/uws:55627
U2 - 10.1016/j.jip.2020.107344
DO - 10.1016/j.jip.2020.107344
M3 - Article
SN - 0022-2011
VL - 171
JO - Journal of Invertebrate Pathology
JF - Journal of Invertebrate Pathology
M1 - 107344
ER -