Online and adaptive pseudoinverse solutions for ELM weights

André van Schaik, Jonathan Tapson

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The ELM method has become widely used for classification and regressions problems as a result of its accuracy, simplicity and ease of use. The solution of the hidden layer weights by means of a matrix pseudoinverse operation is a significant contributor to the utility of the method; however, the conventional calculation of the pseudoinverse by means of a singular value decomposition (SVD) is not always practical for large data sets or for online updates to the solution. In this paper we discuss incremental methods for solving the pseudoinverse which are suitable for ELM. We show that careful choice of methods allows us to optimize for accuracy, ease of computation, or adaptability of the solution.
    Original languageEnglish
    Pages (from-to)233-238
    Number of pages6
    JournalNeurocomputing
    Volume149
    Issue numberpt. A
    DOIs
    Publication statusPublished - 2015

    Keywords

    • artificial intelligence
    • machine learning
    • pseudoinverses

    Fingerprint

    Dive into the research topics of 'Online and adaptive pseudoinverse solutions for ELM weights'. Together they form a unique fingerprint.

    Cite this