@inproceedings{90f348e1d6ba4af4a4b419c15a6e0642,
title = "Online and automated reliable system design to remove blink and muscle artefact in EEG",
abstract = "![CDATA[Electroencephalograms (EEGs) are progressively emerging as a significant measure of brain activity and are very effective tool for the diagnosis and treatment of mental and brain diseases and disorders including sleep apnea, Alzheimer's disease and Neurodevelopmental disorders. However, EEG signal is mixed with other biological signals including Ocular and Muscular artefacts making it difficult to extract the diagnostic features. Therefore, the contaminated EEG channels are often discarded by the medical practitioners resulting less accurate diagnosis. In this paper we propose a real-time low-complexity and reliable system design methodology to remove these artefacts and noise in an automated fashion to aid online diagnosis under the pervasive personalized healthcare set-up without the need of any reference electrode. The simulation and hardware performance of the proposed methodology are measured and compared in terms of correlation and regression statistics lying above 80% and 67% which are much improved over the state-of-the art methodologies.]]",
keywords = "electroencephalography, independent component analysis, signal processing",
author = "Swati Bhardwaj and Pranit Jadhav and Bhagyaraja Adapa and Amit Acharyya and Naik, {Ganesh R.}",
year = "2015",
doi = "10.1109/EMBC.2015.7319951",
language = "English",
isbn = "9781424492718",
publisher = "IEEE",
pages = "6784--6787",
booktitle = "Biomedical Engineering: A Bridge to Improve the Quality of Health Care and the Quality of Life: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015), Milano, Italy, 25-29 August 2015",
note = "IEEE Engineering in Medicine and Biology Society. Annual Conference ; Conference date: 25-08-2015",
}