Abstract
1/f fluctuations have been described in numerous physical and biological processes. This noise structure describes an inverse relationship between the intensity and frequency of events in a time series (for example reflected in power spectra), and is believed to indicate long-range dependence, whereby events at one time point influence events many observations later. 1/fhas been identified in rhythmic behaviors, such as music, and is typically attributed to long-range correlations. However short-range dependence in musical performance is a well-established finding and past research has suggested that 1/f can arise from multiple continuing short-range processes. We tested this possibility using simulations and time-series modeling, complemented by traditional analyses using power spectra and detrended fluctuation analysis (as often adopted more recently). Our results show that 1/f-type fluctuations in musical contexts may be explained by short-range models involving multiple time lags, and the temporal ranges in which rhythmic hierarchies are expressed are apt to create these fluctuations through such short-range autocorrelations. We also analyzed gait, heartbeat, and resting-state EEG data, demonstrating the coexistence of multiple short-range processes and 1/f fluctuation in a variety of phenomena. This suggests that 1/f fluctuation might not indicate long-range correlations, and points to its likely origins in musical rhythm and related structures.
Original language | English |
---|---|
Article number | e0216088 |
Number of pages | 15 |
Journal | PLoS One |
Volume | 14 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2019 |
Open Access - Access Right Statement
© 2019 Colley, Dean. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Keywords
- music
- musical meter and rhythm
- noise
- performance