Parallel decay of vision genes in subterranean water beetles

Barbara L. Langille, Simon M. Tierney, Terry Bertozzi, Perry G. Beasley-Hall, Tessa M. Bradford, Erinn P. Fagan-Jeffries, Josephine Hyde, Remko Leijs, Matthew Richardson, Kathleen M. Saint, Danielle N. Stringer, Adrian Villastrigo, William F. Humphreys, Andrew D. Austin, Steven J. B. Cooper

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.
Original languageEnglish
Article number107522
Number of pages9
JournalMolecular Phylogenetics and Evolution
Volume173
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Parallel decay of vision genes in subterranean water beetles'. Together they form a unique fingerprint.

Cite this