Parameter estimation algorithms for Hammerstein output error systems using Levenberg–Marquardt optimization method with varying interval measurements

Junhong Li, Wei Xing Zheng, Juping Gu, Liang Hua

Research output: Contribution to journalArticlepeer-review

Abstract

This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg-Marquardt optimization method, a maximum likelihood Levenberg-Marquardt recursive (ML-LM-R) algorithm using the varying interval input-output data is proposed. Furthermore, a stochastic gradient algorithm is also derived in order to compare it with the proposed ML-LM-R algorithm. Two numerical examples are provided to verify the effectiveness of the proposed algorithms.
Original languageEnglish
Pages (from-to)316-331
Number of pages16
JournalJournal of the Franklin Institute
Volume354
Issue number1
DOIs
Publication statusPublished - 2017

Keywords

  • algorithms
  • nonlinear systems
  • parameter estimation

Fingerprint

Dive into the research topics of 'Parameter estimation algorithms for Hammerstein output error systems using Levenberg–Marquardt optimization method with varying interval measurements'. Together they form a unique fingerprint.

Cite this