Parameter identification for Hammerstein nonlinear systems using the maximum likelihood principle and Levenberg-Marquardt optimization method

Junhong Li, Weixing Zheng, Juping Gu, Liang Hua

Research output: Chapter in Book / Conference PaperConference Paperpeer-review

1 Citation (Scopus)

Abstract

This paper studies the parameter estimation problems of Hammerstein output error autoregressive (OEAR) systems. A maximum likelihood Levenberg-Marquardt recursive (ML-LM-R) algorithm using the varying interval input-output data is presented by using the maximum likelihood principle and Levenberg-Marquardt optimization method. The effectiveness of the algorithm is verified by a numerical example.
Original languageEnglish
Title of host publicationProceedings of 2016 35th Chinese Control Conference (CCC 2016), Chengdu, China, 27-29 July 2016
PublisherIEEE
Pages1886-1890
Number of pages5
ISBN (Print)9789881563910
DOIs
Publication statusPublished - 2016
EventChinese Control Conference -
Duration: 27 Jul 2016 → …

Publication series

Name
ISSN (Print)1934-1768

Conference

ConferenceChinese Control Conference
Period27/07/16 → …

Keywords

  • nonlinear systems
  • parameter estimation
  • stochastic processes

Fingerprint

Dive into the research topics of 'Parameter identification for Hammerstein nonlinear systems using the maximum likelihood principle and Levenberg-Marquardt optimization method'. Together they form a unique fingerprint.

Cite this