Performance and economic analysis of photovoltaic/thermal systems with phase change materials and a parallel serpentine design in dusty conditions

Yan Ru Fang, MD Shouquat Hossain, Zafar Said, Mohammad A. Alim, A. Wadi Al-Fatlawi, Laveet Kumar, Ahmad K. Sleiti, Jeyraj Selvaraj, Pingjian Yang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In photovoltaic technology, the energy conversion efficiency could be better, which is exacerbated by overheating the modules. Several climatic variables might affect photovoltaic conversion efficiency, including sun radiation, temperature, humidity, and wind speed. In addition, photovoltaic panels are susceptible to dust accumulation and temperature variations. Conventional photovoltaic/thermal (PV/T) systems can reduce surface temperatures and alleviate overheating, but those water-based PV/T systems have a significant shortcoming when operating during the day. This study aims to evaluate experimentally the performance of phase change material (PCM) integrated with various water flow systems in a newly developed parallel serpentine flow PV/T system with a dusty module. In this context, this study developed a PV/T-PCM module and a PV/T-PCM-Dust module to compare their performances. The results show that the maximum electrical and average thermal efficiency for the PV/T-PCM and PV/T-PCM-Dust modules were 17.52 %, 14.83 %, 79.93 %, and 73 %, respectively. Consequently, thermal energy storage units in PV/T systems as an intermediate energy storage medium offer a promising solution to this problem by storing large amounts of heat and dissipating it when required. The integration of PCM technology not only enhances electrical and thermal performance but also extends the lifespan of the PV system, further increasing its economic viability. The economic analysis suggests that the PV/T-PCM system has the potential to revolutionize the renewable energy industry and pave the way for a more sustainable future.
Original languageEnglish
Article number125890
JournalApplied Thermal Engineering
Volume268
DOIs
Publication statusPublished - 1 Jun 2025

Bibliographical note

Publisher Copyright:
© 2025 Elsevier Ltd

Keywords

  • Dust Accumulation
  • Economic Analysis
  • Electrical and Thermal Efficiency
  • Energy Performance
  • Phase Change Materials
  • Photovoltaic-Thermal Hybrid Systems

Fingerprint

Dive into the research topics of 'Performance and economic analysis of photovoltaic/thermal systems with phase change materials and a parallel serpentine design in dusty conditions'. Together they form a unique fingerprint.

Cite this