Phase management in single-crystalline vanadium dioxide beams

Run Shi, Yong Chen, Xiangbin Cai, Qing Lian, Zhuoqiong Zhang, Nan Shen, Abbas Amini, Ning Wang, Chun Cheng

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

A systematic study of various metal-insulator transition (MIT) associated phases of VO2, including metallic R phase and insulating phases (T, M1, M2), is required to uncover the physics of MIT and trigger their promising applications. Here, through an oxide inhibitor-assisted stoichiometry engineering, we show that all the insulating phases can be selectively stabilized in single-crystalline VO2 beams at room temperature. The stoichiometry engineering strategy also provides precise spatial control of the phase configurations in as-grown VO2 beams at the submicron-scale, introducing a fresh concept of phase transition route devices. For instance, the combination of different phase transition routes at the two sides of VO2 beams gives birth to a family of single-crystalline VO2 actuators with highly improved performance and functional diversity. This work provides a substantial understanding of the stoichiometry-temperature phase diagram and a stoichiometry engineering strategy for the effective phase management of VO2.
Original languageEnglish
Article number4214
Number of pages9
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Phase management in single-crystalline vanadium dioxide beams'. Together they form a unique fingerprint.

Cite this