TY - JOUR
T1 - Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents
AU - Chen, Li
AU - Yang, Jin-yan
AU - Wang, Dan
PY - 2020
Y1 - 2020
N2 - Applying biodegradable chelating agents to assist in phytoremediation is a promising method to increase the remove efficiency of metal pollutants from contaminated soils. The effects of biodegradable chelating agents on improving the phytoremediation capacity in uranium (U) and cadmium (Cd) contaminated soil was investigated using sunflowers, which were grown in pots containing soil with U and Cd added at 15 mg/kg. After 2 months of growth, citric acid (CA), oxalic acid (OA) and ethylenediamine disuccinate (EDDS) at various concentrations (0, 2.5, 5.0 and 7.5 mmol/kg) were applied. The results showed that plant biomass decreased by 12.12% for shoot and 15.74% for root under U and Cd combined stress. Meanwhile, chelating agent treatments, especially with EDDS, enhanced U and Cd stress in plants by decreasing biomass, inhibiting photosynthesis, and increasing malondialdehyde and H2O2 levels. The U uptake of plants after CA addition was significantly greater than that after OA and EDDS addition. Nevertheless, EDDS addition has better effects on Cd uptake than CA and OA addition. U and Cd remove efficiencies reached the maximum following the application of 5.0 mmol/kg CA and 5.0 mmol/kg EDDS, which were 177.48% and 181.51% higher than that of the control, respectively. Furthermore, the bioavailable U content in soils treated with CA were higher than that in soils treated with EDDS, whereas bioavailable Cd content significantly increased due to EDDS addition. These results suggest that biodegradable chelating agents have significant effects on improving the U and Cd phytoremediation potential of sunflowers.
AB - Applying biodegradable chelating agents to assist in phytoremediation is a promising method to increase the remove efficiency of metal pollutants from contaminated soils. The effects of biodegradable chelating agents on improving the phytoremediation capacity in uranium (U) and cadmium (Cd) contaminated soil was investigated using sunflowers, which were grown in pots containing soil with U and Cd added at 15 mg/kg. After 2 months of growth, citric acid (CA), oxalic acid (OA) and ethylenediamine disuccinate (EDDS) at various concentrations (0, 2.5, 5.0 and 7.5 mmol/kg) were applied. The results showed that plant biomass decreased by 12.12% for shoot and 15.74% for root under U and Cd combined stress. Meanwhile, chelating agent treatments, especially with EDDS, enhanced U and Cd stress in plants by decreasing biomass, inhibiting photosynthesis, and increasing malondialdehyde and H2O2 levels. The U uptake of plants after CA addition was significantly greater than that after OA and EDDS addition. Nevertheless, EDDS addition has better effects on Cd uptake than CA and OA addition. U and Cd remove efficiencies reached the maximum following the application of 5.0 mmol/kg CA and 5.0 mmol/kg EDDS, which were 177.48% and 181.51% higher than that of the control, respectively. Furthermore, the bioavailable U content in soils treated with CA were higher than that in soils treated with EDDS, whereas bioavailable Cd content significantly increased due to EDDS addition. These results suggest that biodegradable chelating agents have significant effects on improving the U and Cd phytoremediation potential of sunflowers.
UR - https://hdl.handle.net/1959.7/uws:63788
U2 - 10.1016/j.jclepro.2020.121491
DO - 10.1016/j.jclepro.2020.121491
M3 - Article
SN - 0959-6526
VL - 263
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
M1 - 121491
ER -