TY - JOUR
T1 - Plant-derived polyphenols attenuate lipopolysaccharide-induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages
AU - Shanmugam, Kirubakaran
AU - Holmquist, Lina
AU - Steele, Megan
AU - Stuchbury, Grant
AU - Berbaum, Katrin
AU - Schulz, Oliver
AU - GarcÃÂa, Obdulio Benavente
AU - Castillo, Julian
AU - Burnell, Jim
AU - Rivas, Vernon G.
AU - Dobson, Geoff
AU - Muench, Gerald
PY - 2008
Y1 - 2008
N2 - Lipopolysaccharides released during bacterial infections induce the expression of pro-inflammatory cytokines and lead to complications such as neuronal damage in the CNS and septic shock in the periphery. While the initial infection is treated by antibiotics, anti-inflammatory agents would be advantageous add-on medications. In order to identify such compounds, we have compared 29 commercially available polyphenol-containing plant extracts and pure compounds for their ability to prevent LPS-induced up-regulation of NO production. Among the botanical extracts, bearberry and grape seed were the most active preparations, exhibiting IC(50) values of around 20 mug/mL. Among the pure compounds, IC(50) values for apigenin, diosmetin and silybin were 15, 19 and 12 muM, in N-11 murine microglia, and 7, 16 and 25 muM, in RAW 264.7 murine macrophages, respectively. In addition, these flavonoids were also able to down-regulate LPS-induced tumour necrosis factor production. Structure-activity relationships of the flavonoids demonstrated three distinct principles: (i) flavonoid-aglycons are more potent than the corresponding glycosides, (ii) flavonoids with a 4'-OH substitution in the B-ring are more potent than those with a 3'-OH-4'-methoxy substitution, (iii) flavonoids of the flavone type (with a C2=C3 double bond) are more potent than those of the flavanone type (with a at C2-C3 single bond).
AB - Lipopolysaccharides released during bacterial infections induce the expression of pro-inflammatory cytokines and lead to complications such as neuronal damage in the CNS and septic shock in the periphery. While the initial infection is treated by antibiotics, anti-inflammatory agents would be advantageous add-on medications. In order to identify such compounds, we have compared 29 commercially available polyphenol-containing plant extracts and pure compounds for their ability to prevent LPS-induced up-regulation of NO production. Among the botanical extracts, bearberry and grape seed were the most active preparations, exhibiting IC(50) values of around 20 mug/mL. Among the pure compounds, IC(50) values for apigenin, diosmetin and silybin were 15, 19 and 12 muM, in N-11 murine microglia, and 7, 16 and 25 muM, in RAW 264.7 murine macrophages, respectively. In addition, these flavonoids were also able to down-regulate LPS-induced tumour necrosis factor production. Structure-activity relationships of the flavonoids demonstrated three distinct principles: (i) flavonoid-aglycons are more potent than the corresponding glycosides, (ii) flavonoids with a 4'-OH substitution in the B-ring are more potent than those with a 3'-OH-4'-methoxy substitution, (iii) flavonoids of the flavone type (with a C2=C3 double bond) are more potent than those of the flavanone type (with a at C2-C3 single bond).
KW - bacterial diseases
KW - endotoxins
KW - flavonoids
KW - inflammation
KW - nitric oxide
KW - septic shock
UR - http://handle.uws.edu.au:8081/1959.7/45949
M3 - Article
SN - 1613-4125
JO - Molecular Nutrition & Food Research
JF - Molecular Nutrition & Food Research
ER -