TY - JOUR
T1 - Plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase activity implicated in different aspects of plant development
AU - Plett, Jonathan M.
AU - McDonnell, Lisa
AU - Regan, Sharon
PY - 2009
Y1 - 2009
N2 - Proper plant development is dependent on the coordination and tight control of a wide variety of different signals. In the study of the plant hormone ethylene, control of the immediate biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is of interest as the level of ethylene can either help or hinder plant growth during times of stress. It is known that ACC can be reversibly removed from the biosynthesis pathway through conjugation into other compounds. We recently reported that plants can also irreversibly remove ACC from ethylene production through the activity of a plant encoded ACC deaminase. Heretofore only found in bacteria, we showed that there was ACC deaminase activity in both Arabidopsis and in developing wood of poplar. Here we extend this original work and show that there is also ACC deaminase activity in tomato plants, and that this activity is regulated during tomato fruit development. Further, using an antisense construct of AtACD1 in Arabidopsis, we investigate the role of ACC deamination during salt stress. Together these studies shed light on a new level of control during ethylene production in a wide variety of plant species and during different plant developmental stages.
AB - Proper plant development is dependent on the coordination and tight control of a wide variety of different signals. In the study of the plant hormone ethylene, control of the immediate biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is of interest as the level of ethylene can either help or hinder plant growth during times of stress. It is known that ACC can be reversibly removed from the biosynthesis pathway through conjugation into other compounds. We recently reported that plants can also irreversibly remove ACC from ethylene production through the activity of a plant encoded ACC deaminase. Heretofore only found in bacteria, we showed that there was ACC deaminase activity in both Arabidopsis and in developing wood of poplar. Here we extend this original work and show that there is also ACC deaminase activity in tomato plants, and that this activity is regulated during tomato fruit development. Further, using an antisense construct of AtACD1 in Arabidopsis, we investigate the role of ACC deamination during salt stress. Together these studies shed light on a new level of control during ethylene production in a wide variety of plant species and during different plant developmental stages.
UR - http://handle.uws.edu.au:8081/1959.7/528786
U2 - 10.4161/psb.4.12.10060
DO - 10.4161/psb.4.12.10060
M3 - Article
SN - 1559-2316
VL - 4
SP - 1186
EP - 1189
JO - Plant Signaling and Behavior
JF - Plant Signaling and Behavior
IS - 12
ER -