Abstract
Predicting Cardiovascular Length of stay based hospitalization at the time of patients' admitting to the coronary care unit (CCU) or (cardiac intensive care units CICU) is deemed as a challenging task to hospital management systems globally. Recently, few studies examined the length of stay (LOS) predictive analytics for cardiovascular inpatients in ICU. However, there are almost scarcely real attempts utilized machine learning models to predict the likelihood of heart failure patients length of stay in ICU hospitalization. This paper introduces a predictive research architecture to predict Length of Stay (LOS) for heart failure diagnoses from electronic medical records using the state-of-art- machine learning models, in particular, the ensembles regressors and deep learning regression models. Our results showed that the gradient boosting regressor (GBR) outweighed the other proposed models in this study. The GBR reported higher R-squared value followed by the proposed method in this study called Staking Regressor. Additionally, The Random forest Regressor (RFR) was the fastest model to train. Our outcomes suggested that deep learning-based regressor did not achieve better results than the traditional regression model in this study. This work contributes to the field of predictive modelling for electronic medical records for hospital management systems.
| Original language | English |
|---|---|
| Title of host publication | Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2020): Enabling Innovative Technologies for Global Healthcare, 20-24 July 2020, Montreal, Canada |
| Publisher | IEEE |
| Pages | 5442-5445 |
| Number of pages | 4 |
| ISBN (Print) | 9781728119908 |
| DOIs | |
| Publication status | Published - Jul 2020 |
| Event | IEEE Engineering in Medicine and Biology Society. Annual International Conference - Duration: 11 Jul 2022 → … |
Publication series
| Name | |
|---|---|
| ISSN (Print) | 1558-4615 |
Conference
| Conference | IEEE Engineering in Medicine and Biology Society. Annual International Conference |
|---|---|
| Period | 11/07/22 → … |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Keywords
- coronary heart disease
- heart
- intensive care units
- machine learning
- medical care