TY - JOUR
T1 - Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates
AU - Liu, Haibao
AU - Falzon, Brian G.
AU - Tan, Wei
PY - 2018
Y1 - 2018
N2 - The evaluation of Compression-After-Impact (CAI) strength is of great significance in the design of composite aerostructures. This paper presents a model for the numerical simulation of Compression-After-Impact (CAI) of hybrid unidirectional (UD)/woven carbon-fibre reinforced composite laminates. This three-dimensional damage model is based on Continuum Damage Mechanics (CDM) and Linear Elastic Fracture Mechanics (LEFM), implemented as a user defined material subroutine (VUMAT) in Abaqus/Explicit. This model, which accounts for interlaminar and intralaminar damage, and load reversal, incorporates a non-linear shear profile to account for matrix plasticity. Two different composite laminate lay-ups with varying extent of initial impact damage were tested to validate the computational model and enable a quantitative study of the influence of using woven plies on the surfaces of a laminate. Woven surface plies are often used in composite aerostructures to mitigate damage during drilling and constrain the extent of damage during low velocity impact. Good correlation was obtained between physical testing and simulation results, which establishes the capability of this damage model in predicting the structural response of composite laminates. The fully validated model was used to compare the CAI strength of an equivalent UD-only carbon-fibre reinforced composite laminate. The results showed that the hybrid unidirectional (UD)/woven laminate had a marginally higher strength (+3.3%) than the equivalent unidirectional (UD)-only laminate.
AB - The evaluation of Compression-After-Impact (CAI) strength is of great significance in the design of composite aerostructures. This paper presents a model for the numerical simulation of Compression-After-Impact (CAI) of hybrid unidirectional (UD)/woven carbon-fibre reinforced composite laminates. This three-dimensional damage model is based on Continuum Damage Mechanics (CDM) and Linear Elastic Fracture Mechanics (LEFM), implemented as a user defined material subroutine (VUMAT) in Abaqus/Explicit. This model, which accounts for interlaminar and intralaminar damage, and load reversal, incorporates a non-linear shear profile to account for matrix plasticity. Two different composite laminate lay-ups with varying extent of initial impact damage were tested to validate the computational model and enable a quantitative study of the influence of using woven plies on the surfaces of a laminate. Woven surface plies are often used in composite aerostructures to mitigate damage during drilling and constrain the extent of damage during low velocity impact. Good correlation was obtained between physical testing and simulation results, which establishes the capability of this damage model in predicting the structural response of composite laminates. The fully validated model was used to compare the CAI strength of an equivalent UD-only carbon-fibre reinforced composite laminate. The results showed that the hybrid unidirectional (UD)/woven laminate had a marginally higher strength (+3.3%) than the equivalent unidirectional (UD)-only laminate.
UR - https://hdl.handle.net/1959.7/uws:76607
U2 - 10.1016/j.compositesa.2017.11.021
DO - 10.1016/j.compositesa.2017.11.021
M3 - Article
SN - 1359-835X
VL - 105
SP - 189
EP - 202
JO - Composites Part A: Applied Science and Manufacturing
JF - Composites Part A: Applied Science and Manufacturing
ER -