Prelithiation enhanced initial Coulombic efficiency and cycling stability of spinel (FeCoCrNiMn)3O4 high entropy oxide anode

Lishan Dong, Chang Luo, Yichao Wang, Shuaiju Meng, Hui Yu, Weimin Zhao, Chunling Qin, Zhifeng Wang

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

High entropy oxides (HEOs) are expected to be favorable contenders for next generation of lithium-ion battery (LIB) anode materials due to unique entropy stabilization effect and synergistic effect of multi-metal elements. However, HEOs still face issues of low initial coulomb efficiency (ICE, <90 %) and irreversible transformation of phase structures during the cycle, resulting in unsatisfactory cycling stability, which limit their commercialization applications. Herein, chemical prelithiation strategy is performed to form Li-rich surface modification layer (SML) on spinel (FeCoCrNiMn)3O4 HEOs. The prelithiated HEO (PreHEO-20) exhibits superior ICE (97.5 %) and cycling stability, delivering a reversible capacity of 495 mAh g−1 after cycling at 2000 mA g−1 for 4000 cycles. The good electrochemical performance can be attributed to the introduction of “extra Li” into the anode material by chemical prelithiation to offset lithium loss during cycling as well as the formation of dense LiF layer to effectively isolate the contact between the electrolyte and the active substance, thus guaranteeing the highly reversible spinel structure. In this situation, the (−)PreHEO-20||LiFePO4(+) full cell presents an excellent reversible capacity of 121.8 mAh g−1 after 100 cycles at 0.2C, revealing huge application potential of chemical prelithiated HEOs in LIB field.

Original languageEnglish
Article number113185
Number of pages13
JournalJournal of Energy Storage
Volume98
Issue numberPart B
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier Ltd

Keywords

  • Chemical prelithiation
  • Cryo-TEM
  • High entropy oxides
  • Li-ion batteries
  • Surface modification layer

Fingerprint

Dive into the research topics of 'Prelithiation enhanced initial Coulombic efficiency and cycling stability of spinel (FeCoCrNiMn)3O4 high entropy oxide anode'. Together they form a unique fingerprint.

Cite this