Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes

Norita Gildea, Joel Rocha, Donal O’Shea, Simon Green, Mikel Egaña

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Purpose: The time constant of phase II pulmonary oxygen uptake kinetics (V˙O2τp) is increased when high-intensity exercise is initiated from an elevated baseline (work-to-work). A high-intensity priming exercise (PE), which enhances muscle oxygen supply, does not reduce this prolonged V˙O2τp in healthy active individuals, likely because V˙O2τp is limited by metabolic inertia (rather than oxygen delivery) in these individuals. Since V˙O2τp is more influenced by oxygen delivery in type 2 diabetes (T2D), this study tested the hypothesis that PE would reduce V˙O2τp in T2D during work-to-work cycle exercise. Methods: Nine middle-aged individuals with T2D and nine controls (ND) performed four bouts of constant-load, high-intensity work-to-work transitions, each commencing from a baseline of moderate-intensity. Two bouts were completed without PE and two were preceded by PE. The rate of muscle deoxygenation ([HHb + Mb]) and surface integrated electromyography (iEMG) were measured at the right and left vastus lateralis, respectively. Results: Subsequent to PE, V˙O2τp was reduced (P = 0.001) in T2D (from 59 ± 17 to 37 ± 20 s) but not (P = 0.24) in ND (44 ± 10 to 38 ± 7 s). The amplitude of the V ˙ O 2 slow component (V˙O2τp 2A s) was reduced (P = 0.001) in both groups (T2D: 0.16 ± 0.09 to 0.11 ± 0.04 l/min; ND: 0.21 ± 0.13 to 0.13 ± 0.09 l/min). This was accompanied by a reduction in ΔiEMG from the onset of V ˙ O 2 slow component to end-exercise in both groups (P < 0.001), while [HHb + Mb] kinetics remained unchanged. Conclusions: PE accelerates V˙O2τp in T2D, likely by negating the O 2 delivery limitation extant in the unprimed condition, and reduces the V ˙ O 2A s possibly due to changes in muscle fibre activation.

Original languageEnglish
Pages (from-to)409-423
Number of pages15
JournalEuropean Journal of Applied Physiology
Volume121
Issue number2
DOIs
Publication statusPublished - Feb 2021

Bibliographical note

Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Fingerprint

Dive into the research topics of 'Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes'. Together they form a unique fingerprint.

Cite this