TY - JOUR
T1 - Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore
AU - Coyle, David R.
AU - Clark, Katherine E.
AU - Raffa, Kenneth F.
AU - Johnson, Scott N.
PY - 2011
Y1 - 2011
N2 - Black vine weevils, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), are globally-distributed polyphagous pests of many horticultural crops. We investigated how adult weevils were affected by host switching and, in particular, how host plant species nutritional and defensive chemistry affected subsequent host plant species selection and oviposition. Adults were fed one of three host plant species, blackcurrant [Ribes nigrum L. (Grossulariaceae)], raspberry [Rubus idaeus L. (Rosaceae)], or strawberry [Fragaria x ananassa Duchesne (Rosaceae)], throughout their pre-reproductive periods and then subjected to behavioral choice assays with these plants. Foliar chemistry differed significantly among the three host plant species. Compared to raspberry and strawberry foliage, blackcurrant foliage was 13% lower in nitrogen, 3% higher in carbon, and 28% higher in phenolic compounds. Initial host plant species had a significant effect on weevil mortality, with more weevils dying when previously fed blackcurrant (12%) than strawberry (3%) or raspberry (0%) regardless of subsequent host. Initial host plant species also affected oviposition, with weevils laying only ca. two eggs per week when previously fed blackcurrant, compared to those on raspberry or strawberry (ca. 11 and 15 eggs per week, respectively). When given a choice, weevils discriminated among host plant species and tended to oviposit on plants on which they had previously fed, even when the plant was nutritionally inferior for egg production and adult survival. In contrast, feeding behavior was only affected by the current host plant species. Feeding and oviposition were related to leaf chemistry only in blackcurrant, as leaf consumption was negatively correlated with foliar carbon and zinc concentrations, and positively correlated with foliar phosphorus and potassium concentrations.
AB - Black vine weevils, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), are globally-distributed polyphagous pests of many horticultural crops. We investigated how adult weevils were affected by host switching and, in particular, how host plant species nutritional and defensive chemistry affected subsequent host plant species selection and oviposition. Adults were fed one of three host plant species, blackcurrant [Ribes nigrum L. (Grossulariaceae)], raspberry [Rubus idaeus L. (Rosaceae)], or strawberry [Fragaria x ananassa Duchesne (Rosaceae)], throughout their pre-reproductive periods and then subjected to behavioral choice assays with these plants. Foliar chemistry differed significantly among the three host plant species. Compared to raspberry and strawberry foliage, blackcurrant foliage was 13% lower in nitrogen, 3% higher in carbon, and 28% higher in phenolic compounds. Initial host plant species had a significant effect on weevil mortality, with more weevils dying when previously fed blackcurrant (12%) than strawberry (3%) or raspberry (0%) regardless of subsequent host. Initial host plant species also affected oviposition, with weevils laying only ca. two eggs per week when previously fed blackcurrant, compared to those on raspberry or strawberry (ca. 11 and 15 eggs per week, respectively). When given a choice, weevils discriminated among host plant species and tended to oviposit on plants on which they had previously fed, even when the plant was nutritionally inferior for egg production and adult survival. In contrast, feeding behavior was only affected by the current host plant species. Feeding and oviposition were related to leaf chemistry only in blackcurrant, as leaf consumption was negatively correlated with foliar carbon and zinc concentrations, and positively correlated with foliar phosphorus and potassium concentrations.
KW - aversion learning
KW - black vine weevil
KW - induced preferences
KW - nutritional chemistry
KW - secondary metabolites
UR - http://handle.uws.edu.au:8081/1959.7/510994
M3 - Article
JO - Entomologia Experimentalis et Applicata
JF - Entomologia Experimentalis et Applicata
ER -