TY - JOUR
T1 - Properties of regenerated mouse extensor digitorum longus muscle following notexin injury
AU - Head, S. I.
AU - Houweling, P. J.
AU - Chan, S.
AU - Chen, G.
AU - Hardeman, E. C.
PY - 2014
Y1 - 2014
N2 - Muscles of mdx mice are known to be more susceptible to contraction-induced damage than wild-type muscle. However, it is not clear whether this is because of dystrophin deficiency or because of the abnormal branching morphology of dystrophic muscle fibres. This distinction has an important bearing on our traditional understanding of the function of dystrophin as a mechanical stabilizer of the sarcolemma. In this study, we address the question: 'Does dystrophin-positive, regenerated muscle containing branched fibres also show an increased susceptibility to contraction-induced damage?' We produced a model of fibre branching by injecting dystrophin-positive extensor digitorum longus muscles with notexin. The regenerated muscle was examined at 21 days postinjection. Notexin-injected muscle contained 29% branched fibres and was not more susceptible to damage from mild eccentric contractions than contralateral saline-injected control muscle. Regenerated muscles also had greater mass, greater cross-sectional area and lower specific force than control muscles. We conclude that the number of branched fibres in this regenerated muscle is below the threshold needed to increase susceptibility to damage. However, it would serve as an ideal control for muscles of young mdx mice, allowing for clearer differentiation of the effects of dystrophin deficiency from the effects of fibre regeneration and morphology.
AB - Muscles of mdx mice are known to be more susceptible to contraction-induced damage than wild-type muscle. However, it is not clear whether this is because of dystrophin deficiency or because of the abnormal branching morphology of dystrophic muscle fibres. This distinction has an important bearing on our traditional understanding of the function of dystrophin as a mechanical stabilizer of the sarcolemma. In this study, we address the question: 'Does dystrophin-positive, regenerated muscle containing branched fibres also show an increased susceptibility to contraction-induced damage?' We produced a model of fibre branching by injecting dystrophin-positive extensor digitorum longus muscles with notexin. The regenerated muscle was examined at 21 days postinjection. Notexin-injected muscle contained 29% branched fibres and was not more susceptible to damage from mild eccentric contractions than contralateral saline-injected control muscle. Regenerated muscles also had greater mass, greater cross-sectional area and lower specific force than control muscles. We conclude that the number of branched fibres in this regenerated muscle is below the threshold needed to increase susceptibility to damage. However, it would serve as an ideal control for muscles of young mdx mice, allowing for clearer differentiation of the effects of dystrophin deficiency from the effects of fibre regeneration and morphology.
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:41900
U2 - 10.1113/expphysiol.2013.077289
DO - 10.1113/expphysiol.2013.077289
M3 - Article
VL - 99
SP - 664
EP - 674
JO - Experimental Physiology
JF - Experimental Physiology
IS - 4
ER -