Proteogenomic analysis of inhibitor of differentiation 4 (ID4) in basal-like breast cancer

Laura A. Baker, Holly Holliday, Daniel Roden, Christoph Krisp, Sunny Z. Wu, Simon Junankar, Aurelien A. Serandour, Hisham Mohammed, Radhika Nair, Geetha Sankaranarayanan, Andrew M. K. Law, Andrea McFarland, Peter T. Simpson, Sunil Lakhani, Eoin Dodson, Christina Selinger, Lyndal Anderson, Goli Samimi, Neville F. Hacker, Elgene LimChristopher J. Ormandy, Matthew J. Naylor, Kaylene Simpson, Iva Nikolic, Sandra O’Toole, Warren Kaplan, Mark J. Cowley, Jason S. Carroll, Mark Molloy, Alexander Swarbrick

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. Methods: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. Results: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. Conclusions: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Original languageEnglish
Article number63
Number of pages18
JournalBreast Cancer Research
Volume22
DOIs
Publication statusPublished - 2020

Open Access - Access Right Statement

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Fingerprint

Dive into the research topics of 'Proteogenomic analysis of inhibitor of differentiation 4 (ID4) in basal-like breast cancer'. Together they form a unique fingerprint.

Cite this