TY - JOUR
T1 - Rapid recalibration to audiovisual asynchrony
AU - Burg, Erik van der
AU - Alais, David
AU - Cass, John
PY - 2013
Y1 - 2013
N2 - To combine information from different sensory modalities, the brain must deal with considerable temporal uncertainty. In natural environments, an external event may produce simultaneous auditory and visual signals yet they will invariably activate the brain asynchronously due to different propagation speeds for light and sound, and different neural response latencies once the signals reach the receptors. One strategy the brain uses to deal with audiovisual timing variation is to adapt to a prevailing asynchrony to help realign the signals. Here, using psychophysical methods in human subjects, we investigate audiovisual recalibration and show that it takes place extremely rapidly without explicit periods of adaptation. Our results demonstrate that exposure to a single, brief asynchrony is sufficient to produce strong recalibration effects. Recalibration occurs regardless of whether the preceding trial was perceived as synchronous, and regardless of whether a response was required.Wepropose that this rapid recalibration is a fast-acting sensory effect, rather than a higher-level cognitive process. An account in terms of response bias is unlikely due to a strong asymmetry whereby stimuli with vision leading produce bigger recalibrations than audition leading. A fast-acting recalibration mechanism provides a means for overcoming inevitable audiovisual timing variation and serves to rapidly realign signals at onset to maximize the perceptual benefits of audiovisual integration.
AB - To combine information from different sensory modalities, the brain must deal with considerable temporal uncertainty. In natural environments, an external event may produce simultaneous auditory and visual signals yet they will invariably activate the brain asynchronously due to different propagation speeds for light and sound, and different neural response latencies once the signals reach the receptors. One strategy the brain uses to deal with audiovisual timing variation is to adapt to a prevailing asynchrony to help realign the signals. Here, using psychophysical methods in human subjects, we investigate audiovisual recalibration and show that it takes place extremely rapidly without explicit periods of adaptation. Our results demonstrate that exposure to a single, brief asynchrony is sufficient to produce strong recalibration effects. Recalibration occurs regardless of whether the preceding trial was perceived as synchronous, and regardless of whether a response was required.Wepropose that this rapid recalibration is a fast-acting sensory effect, rather than a higher-level cognitive process. An account in terms of response bias is unlikely due to a strong asymmetry whereby stimuli with vision leading produce bigger recalibrations than audition leading. A fast-acting recalibration mechanism provides a means for overcoming inevitable audiovisual timing variation and serves to rapidly realign signals at onset to maximize the perceptual benefits of audiovisual integration.
UR - http://handle.uws.edu.au:8081/1959.7/532534
U2 - 10.1523/JNEUROSCI.1182-13.2013
DO - 10.1523/JNEUROSCI.1182-13.2013
M3 - Article
SN - 0270-6474
VL - 33
SP - 14633
EP - 14637
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 37
ER -