Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine

Shanlin Fu, Hongjie Wang, Michael J. Davies, Roger T. Dean

    Research output: Contribution to journalArticle

    95 Citations (Scopus)

    Abstract

    The toxicity of hypochlorous acid (HOCl) generated from activated neutrophils has been associated with several pathological processes such as atherosclerosis. Formation of 3-chlorotyrosine (Cl-Tyr) has been used as a marker for assessing the involvement of HOCl in such processes. In this study, we aimed to investigate the formation of Cl-Tyr from reaction of HOCl with tyrosine (both free and peptide-bound) and the fate of Cl-Tyr under such conditions. Tyrosine, N-acetyltyrosine, bovine serum albumin, and human low density lipoproteins were incubated with a range of reagent hypochlorite concentrations for varying periods in 10 mM phosphate buffer (pH 7.4) at 22 °C. The reaction products, and several biological samples, were hydrolyzed (in the case of proteins), isolated, and purified by high pressure liquid chromatography and characterized or quantitated by mass spectrometry and NMR. A significant amount of 3,5-dichlorotyrosine (diCl-Tyr) was obtained from the bovine serum albumin, low density lipoprotein, and some biological samples, in addition to Cl-Tyr, indicating that Cl-Tyr competes effectively for HOCl even when tyrosine is present in great excess. Cl-Tyr and diCl-Tyr were also formed from free tyrosine but then reacted further with HOCl. This finding differs from a claim in the literature that Cl-Tyr was not formed in such a system. The further reaction products of Cl- Tyr and diCl-Tyr with HOCl were elucidated as their corresponding mono- and dichlorinated 4-hydroxyphenylacetaldehydes. These results indicate the importance of assessing other products of HOCl action in addition to Cl-Tyr.
    Original languageEnglish
    Number of pages8
    JournalJournal of Biological Chemistry
    Publication statusPublished - 2000

    Open Access - Access Right Statement

    ©2000 The American Society for Biochemistry and Molecular Biology, Inc.

    Keywords

    • post-translation modification
    • proteins
    • synthesis

    Fingerprint

    Dive into the research topics of 'Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine'. Together they form a unique fingerprint.

    Cite this