TY - JOUR
T1 - Real-time object segmentation using a bag of features approach
AU - Aldavert, David
AU - Ramisa, Arnau
AU - De Mantaras, Ramon L.
AU - Toledo, Ricardo
PY - 2010
Y1 - 2010
N2 - In this paper, we propose an object segmentation framework, based on the popular bag of features (BoF), which can process several images per second while achieving a good segmentation accuracy assigning an object category to every pixel of the image. We propose an efficient color descriptor to complement the information obtained by a typical gradient-based local descriptor. Results show that color proves to be a useful cue to increase the segmentation accuracy, specially in large homogeneous regions. Then, we extend the Hierarchical K-Means codebook using the recently proposed Vector of Locally Aggregated Descriptors method. Finally, we show that the BoF method can be easily parallelized since it is applied locally, thus the time necessary to process an image is further reduced. The performance of the proposed method is evaluated in the standard PASCAL 2007 Segmentation Challenge object segmentation dataset.
AB - In this paper, we propose an object segmentation framework, based on the popular bag of features (BoF), which can process several images per second while achieving a good segmentation accuracy assigning an object category to every pixel of the image. We propose an efficient color descriptor to complement the information obtained by a typical gradient-based local descriptor. Results show that color proves to be a useful cue to increase the segmentation accuracy, specially in large homogeneous regions. Then, we extend the Hierarchical K-Means codebook using the recently proposed Vector of Locally Aggregated Descriptors method. Finally, we show that the BoF method can be easily parallelized since it is applied locally, thus the time necessary to process an image is further reduced. The performance of the proposed method is evaluated in the standard PASCAL 2007 Segmentation Challenge object segmentation dataset.
UR - http://handle.uws.edu.au:8081/1959.7/533670
U2 - 10.3233/978-1-60750-643-0-321
DO - 10.3233/978-1-60750-643-0-321
M3 - Article
SN - 0922-6389
VL - 220
SP - 321
EP - 329
JO - Frontiers in Artificial Intelligence and Applications
JF - Frontiers in Artificial Intelligence and Applications
ER -