TY - JOUR
T1 - Reduced type III neuregulin 1 expression does not modulate the behavioural sensitivity of mice to acute Δ9-tetrahydrocannabinol (D9-THC)
AU - Lloyd, David
AU - Talmage, David
AU - Weickert, Cynthia Shannon
AU - Karl, Tim
PY - 2018
Y1 - 2018
N2 - Mice with a mutation in the transmembrane domain of the schizophrenia risk gene, neuregulin 1 (Nrg1 TM HET), are more susceptible to the neuro-behavioural effects of Δ9-tetrahydrocannabinol (D9-THC), the principal psychoactive component in cannabis. However, NRG1 is transcriptionally complex with over 30 different isoforms, most of which carry a transmembrane domain, raising the question which NRG1 isoform(s) may contribute to this phenotype. Type III NRG1/Nrg1 is the most brain abundant isoform and brain studies have identified increased levels of type III NRG1 mRNA in humans carrying a NRG1 risk haplotype for schizophrenia. To investigate whether mice heterozygote for type III Nrg1 (i.e. knockout: type III Nrg1+/−) are more susceptible to the behavioural effects of acute doses of D9-THC, we injected male mice with either vehicle or D9-THC (3 or 10 mg/kg) before testing them for locomotion, anxiety, social interaction, and sensorimotor gating. Acute D9-THC led to reduced locomotion and reduced social interaction, but increased anxiety in mice. Furthermore, type III Nrg1 males displayed a robust deficit in sensorimotor gating and demonstrated reduced following during social interaction across drug conditions. However, they did not show a change in behavioural susceptibility to acute D9-THC compared to controls. These results reinforce the validity of type III Nrg1+/− mice for schizophrenia research and suggest that loss of function of type III Nrg1 may not be responsible for the exaggerated response to acute D9-THC observed in heterozygous Nrg1 TM mice. This highlights the importance of careful consideration of Nrg1 isoform type differences.
AB - Mice with a mutation in the transmembrane domain of the schizophrenia risk gene, neuregulin 1 (Nrg1 TM HET), are more susceptible to the neuro-behavioural effects of Δ9-tetrahydrocannabinol (D9-THC), the principal psychoactive component in cannabis. However, NRG1 is transcriptionally complex with over 30 different isoforms, most of which carry a transmembrane domain, raising the question which NRG1 isoform(s) may contribute to this phenotype. Type III NRG1/Nrg1 is the most brain abundant isoform and brain studies have identified increased levels of type III NRG1 mRNA in humans carrying a NRG1 risk haplotype for schizophrenia. To investigate whether mice heterozygote for type III Nrg1 (i.e. knockout: type III Nrg1+/−) are more susceptible to the behavioural effects of acute doses of D9-THC, we injected male mice with either vehicle or D9-THC (3 or 10 mg/kg) before testing them for locomotion, anxiety, social interaction, and sensorimotor gating. Acute D9-THC led to reduced locomotion and reduced social interaction, but increased anxiety in mice. Furthermore, type III Nrg1 males displayed a robust deficit in sensorimotor gating and demonstrated reduced following during social interaction across drug conditions. However, they did not show a change in behavioural susceptibility to acute D9-THC compared to controls. These results reinforce the validity of type III Nrg1+/− mice for schizophrenia research and suggest that loss of function of type III Nrg1 may not be responsible for the exaggerated response to acute D9-THC observed in heterozygous Nrg1 TM mice. This highlights the importance of careful consideration of Nrg1 isoform type differences.
KW - cannabis
KW - genetic aspects
KW - mice as laboratory animals
KW - phenotype
KW - schizophrenia
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:46666
U2 - 10.1016/j.pbb.2018.05.003
DO - 10.1016/j.pbb.2018.05.003
M3 - Article
SN - 0091-3057
VL - 170
SP - 64
EP - 70
JO - Pharmacology, Biochemistry and Behavior
JF - Pharmacology, Biochemistry and Behavior
ER -