TY - JOUR
T1 - Rhizobiome engineering : unveiling complex rhizosphere interactions to enhance plant growth and health
AU - Orozco-Mosqueda, Ma. del Carmen
AU - Fadiji, Ayomide Emmanuel
AU - Babalola, Olubukola Oluranti
AU - Glick, Bernard R.
AU - Santoyo, Gustavo
PY - 2022
Y1 - 2022
N2 - Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called “omics” sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
AB - Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called “omics” sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
UR - https://hdl.handle.net/1959.7/uws:71524
U2 - 10.1016/j.micres.2022.127137
DO - 10.1016/j.micres.2022.127137
M3 - Article
SN - 0944-5013
VL - 263
JO - Microbiological Research
JF - Microbiological Research
M1 - 127137
ER -