Rising CO2 and warming reduce global canopy demand for nitrogen

Ning Dong, Ian J. Wright, Jing M. Chen, Xiangzhong Luo, Han Wang, Trevor F. Keenan, Nicholas G. Smith, Iain Colin Prentice

Research output: Contribution to journalArticlepeer-review

Abstract

Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2 and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax) and leaf N content in enhanced-CO2 experiments and satellite records signify increasing N limitation of primary production. We predicted Vcmax using the coordination hypothesis and estimated changes in leaf-level photosynthetic N for 1982–2016 assuming proportionality with leaf-level Vcmax at 25°C. The whole-canopy photosynthetic N was derived using satellite-based leaf area index (LAI) data and an empirical extinction coefficient for Vcmax, and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern of Vcmax shares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr−1, while observed leaf (total) N declined by 0.2–0.25% yr−1. Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf-level responses to rising CO2, and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation.
Original languageEnglish
Pages (from-to)1692-1700
Number of pages9
JournalNew Phytologist
Volume235
Issue number5
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

©2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Fingerprint

Dive into the research topics of 'Rising CO2 and warming reduce global canopy demand for nitrogen'. Together they form a unique fingerprint.

Cite this