TY - JOUR
T1 - Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils
AU - Zhang, Yu-Jing
AU - Hu, Hang-Wei
AU - Yan, Hui
AU - Wang, Jun-Tao
AU - Lam, Shu Kee
AU - Chen, Qing-Lin
AU - Chen, Deli
AU - He, Ji-Zheng
PY - 2019
Y1 - 2019
N2 - Growing evidence points to the pivotal role of the environmental factors in influencing the transmission of antibiotic resistance genes (ARGs) and the propagation of resistant human pathogens. However, our understanding of the ecological and evolutionary environmental factors that contribute to development and dissemination of antibiotic resistance is lacking. Here, we profiled a wide variety of ARGs using the high-throughput quantitative PCR analysis in 61 soil samples collected from ocean and river beaches, which are hotspots for human activities and platforms for potential transmission of environmental ARGs to human pathogens. We identified the dominant abiotic and biotic factors influencing the diversity, abundance and composition of ARGs in these ecosystems. A total of 110 ARGs conferring resistance to eight major categories of antibiotics were detected. The core resistome was mainly affiliated into β-lactam and multidrug resistance, accounting for 66.9% of the total abundance of ARGs. The oprJ gene conferring resistance to multidrug was the most widespread ARG subtype detected in all the samples. The relative abundances of total ARGs and core resistome were significantly correlated with salinity-related properties including electrical conductivity and concentrations of sodium and chloride. Random forest analysis and structural equation modelling revealed that salinity was the most important factor modulating the distribution patterns of beach soil ARGs after accounting for multiple drivers. These findings suggest that beach soil is a rich reservoir of ARGs and that salinity is a predominant factor shaping the distribution patterns of soil resistome.
AB - Growing evidence points to the pivotal role of the environmental factors in influencing the transmission of antibiotic resistance genes (ARGs) and the propagation of resistant human pathogens. However, our understanding of the ecological and evolutionary environmental factors that contribute to development and dissemination of antibiotic resistance is lacking. Here, we profiled a wide variety of ARGs using the high-throughput quantitative PCR analysis in 61 soil samples collected from ocean and river beaches, which are hotspots for human activities and platforms for potential transmission of environmental ARGs to human pathogens. We identified the dominant abiotic and biotic factors influencing the diversity, abundance and composition of ARGs in these ecosystems. A total of 110 ARGs conferring resistance to eight major categories of antibiotics were detected. The core resistome was mainly affiliated into β-lactam and multidrug resistance, accounting for 66.9% of the total abundance of ARGs. The oprJ gene conferring resistance to multidrug was the most widespread ARG subtype detected in all the samples. The relative abundances of total ARGs and core resistome were significantly correlated with salinity-related properties including electrical conductivity and concentrations of sodium and chloride. Random forest analysis and structural equation modelling revealed that salinity was the most important factor modulating the distribution patterns of beach soil ARGs after accounting for multiple drivers. These findings suggest that beach soil is a rich reservoir of ARGs and that salinity is a predominant factor shaping the distribution patterns of soil resistome.
UR - https://hdl.handle.net/1959.7/uws:63696
U2 - 10.1016/j.scitotenv.2019.02.454
DO - 10.1016/j.scitotenv.2019.02.454
M3 - Article
SN - 0048-9697
VL - 668
SP - 193
EP - 203
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -