TY - JOUR
T1 - Selection of the best fit flood frequency distribution and parameter estimation procedure : a case study for Tasmania in Australia
AU - Haddad, Khaled
AU - Rahman, Ataur
PY - 2011
Y1 - 2011
N2 - Selection of a flood frequency distribution and associated parameter estimation procedure is an important step in flood frequency analysis. This is however a difficult task due to problems in selecting the best fit distribution from a large number of candidate distributions and parameter estimation procedures available in the literature. This paper presents a case study with flood data from Tasmania in Australia, which examines four model selection criteria: Akaike Information Criterion (AIC), Akaike Information Criterion-second order variant (AIC c), Bayesian Information Criterion (BIC) and a modified Anderson-Darling Criterion (ADC). It has been found from the Monte Carlo simulation that ADC is more successful in recognizing the parent distribution correctly than the AIC and BIC when the parent is a three-parameter distribution. On the other hand, AIC and BIC are better in recognizing the parent distribution correctly when the parent is a two-parameter distribution. From the seven different probability distributions examined for Tasmania, it has been found that two-parameter distributions are preferable to three-parameter ones for Tasmania, with Log Normal appears to be the best selection. The paper also evaluates three most widely used parameter estimation procedures for the Log Normal distribution: method of moments (MOM), method of maximum likelihood (MLE) and Bayesian Markov Chain Monte Carlo method (BAY). It has been found that the BAY procedure provides better parameter estimates for the Log Normal distribution, which results in flood quantile estimates with smaller bias and standard error as compared to the MOM and MLE. The findings from this study would be useful in flood frequency analyses in other Australian states and other countries in particular, when selecting an appropriate probability distribution from a number of alternatives.
AB - Selection of a flood frequency distribution and associated parameter estimation procedure is an important step in flood frequency analysis. This is however a difficult task due to problems in selecting the best fit distribution from a large number of candidate distributions and parameter estimation procedures available in the literature. This paper presents a case study with flood data from Tasmania in Australia, which examines four model selection criteria: Akaike Information Criterion (AIC), Akaike Information Criterion-second order variant (AIC c), Bayesian Information Criterion (BIC) and a modified Anderson-Darling Criterion (ADC). It has been found from the Monte Carlo simulation that ADC is more successful in recognizing the parent distribution correctly than the AIC and BIC when the parent is a three-parameter distribution. On the other hand, AIC and BIC are better in recognizing the parent distribution correctly when the parent is a two-parameter distribution. From the seven different probability distributions examined for Tasmania, it has been found that two-parameter distributions are preferable to three-parameter ones for Tasmania, with Log Normal appears to be the best selection. The paper also evaluates three most widely used parameter estimation procedures for the Log Normal distribution: method of moments (MOM), method of maximum likelihood (MLE) and Bayesian Markov Chain Monte Carlo method (BAY). It has been found that the BAY procedure provides better parameter estimates for the Log Normal distribution, which results in flood quantile estimates with smaller bias and standard error as compared to the MOM and MLE. The findings from this study would be useful in flood frequency analyses in other Australian states and other countries in particular, when selecting an appropriate probability distribution from a number of alternatives.
UR - http://handle.uws.edu.au:8081/1959.7/553828
U2 - 10.1007/s00477-010-0412-1
DO - 10.1007/s00477-010-0412-1
M3 - Article
SN - 1436-3240
VL - 25
SP - 415
EP - 428
JO - Stochastic Environmental Research and Risk Assessment
JF - Stochastic Environmental Research and Risk Assessment
IS - 3
ER -