Self-assembly of a rare high spin FeII/PdII tetradecanuclear cubic cage constructed via the metalloligand approach

Hyunsung Min, Alexander R. Craze, Takahiro Taira, Matthew J. Wallis, Mohan M. Bhadbhade, Ruoming Tian, Daniel J. Fanna, Richard Wuhrer, Shinya Hayami, Jack K. Clegg, Christopher E. Marjo, Leonard F. Lindoy, Feng Li

Research output: Contribution to journalArticlepeer-review

Abstract

Polynuclear heterobimetallic coordination cages in which different metal cations are con-nected within a ligand scaffold are known to adopt a variety of polyhedral architectures, many of which display interesting functions. Within the extensive array of coordination cages incorporating Fe(II) centres reported so far, the majority contain low-spin (LS) Fe(II), with high-spin (HS) Fe(II) being less common. Herein, we present the synthesis and characterisation of a new tetradecanu-clear heterobimetallic [Fe8 Pd6 L8 ](BF4 ]28 (1) cubic cage utilising the metalloligand approach. Use of the tripodal tris-imidazolimine derivative (2) permitted the formation of the tripodal HS Fe(II) metalloligand [FeL](BF4)2·CH3 OH (3) that was subsequently used to form the coordination cage 1. Magnetic and structural analyses gave insight into the manner in which the HS environment of the metalloligand was transferred into the cage architecture along with the structural changes that accompanied its occupancy of the eight corners of the discrete cubic structure.
Original languageEnglish
Pages (from-to)535-547
Number of pages13
JournalChemistry
Volume4
Issue number2
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Self-assembly of a rare high spin FeII/PdII tetradecanuclear cubic cage constructed via the metalloligand approach'. Together they form a unique fingerprint.

Cite this