TY - JOUR
T1 - Serotonergic psychedelic 5-MeO-DMT alters plasticity-related gene expression and generates anxiolytic effects in stressed mice
AU - Nogueira, Margareth
AU - Ferreira Golbert, Daiane C.
AU - Menezes, Richardson
AU - Nóbrega de Almeida, Raíssa
AU - Galvão-Coelho, Nicole L.
AU - Siroky, Andressa N.
AU - Lima, Thiago Z.
AU - Maia, Helton
AU - Leão, Katarina E.
AU - Leão, Richardson N.
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2024.
PY - 2025/1
Y1 - 2025/1
N2 - Serotonergic psychedelics have potential therapeutic effects in treating anxiety and mood disorders, often after a single dose, and are suggested to have plasticity-inducing action. However, a comprehensive mechanism of action is still lacking. Here, we investigated how a single dose of the short-acting 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) acts on gene expression from microdissected brain regions (anterior cingulate cortex - ACC; basolateral amygdala - BLA; ventral hippocampus CA1 region - vCA1 and dentate gyrus"”DG) of naive and stressed mice. Specifically, we compared gene expression of Arc, Zif268, BDNF, CREB, mTORC1, NR2A, TRIP8b, and NFkB in mice injected with 5-MeO-DMT or saline at different time points (1 h, 5 h, or 5 days prior). 5-MeO-DMT altered mRNA expression of immediate early genes Arc and ZiF268 in the ACC, BLA, and vCA1, while NR2A expression was decreased after 5 h in the vCA1. We also found a long-term increase in TRIP8b, a gene related to the modulation of neuronal activity, in the vCA1 after 5 days. Behaviorally, 5-MeO-DMT treated mice showed mixed anxiolytic and anxiogenic effects in the elevated plus maze and open field test 24 h or 5 days after treatment. However, pre-treated mice subjected to acute stress showed both lower corticosterone levels and robust anxiolytic effects of 5-MeO-DMT administration. Together, our findings provide insights into the molecular actions of 5-MeO-DMT in the brain related to anxiolytic effects of behavior.
AB - Serotonergic psychedelics have potential therapeutic effects in treating anxiety and mood disorders, often after a single dose, and are suggested to have plasticity-inducing action. However, a comprehensive mechanism of action is still lacking. Here, we investigated how a single dose of the short-acting 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) acts on gene expression from microdissected brain regions (anterior cingulate cortex - ACC; basolateral amygdala - BLA; ventral hippocampus CA1 region - vCA1 and dentate gyrus"”DG) of naive and stressed mice. Specifically, we compared gene expression of Arc, Zif268, BDNF, CREB, mTORC1, NR2A, TRIP8b, and NFkB in mice injected with 5-MeO-DMT or saline at different time points (1 h, 5 h, or 5 days prior). 5-MeO-DMT altered mRNA expression of immediate early genes Arc and ZiF268 in the ACC, BLA, and vCA1, while NR2A expression was decreased after 5 h in the vCA1. We also found a long-term increase in TRIP8b, a gene related to the modulation of neuronal activity, in the vCA1 after 5 days. Behaviorally, 5-MeO-DMT treated mice showed mixed anxiolytic and anxiogenic effects in the elevated plus maze and open field test 24 h or 5 days after treatment. However, pre-treated mice subjected to acute stress showed both lower corticosterone levels and robust anxiolytic effects of 5-MeO-DMT administration. Together, our findings provide insights into the molecular actions of 5-MeO-DMT in the brain related to anxiolytic effects of behavior.
UR - http://www.scopus.com/inward/record.url?scp=85197565954&partnerID=8YFLogxK
U2 - 10.1038/s41380-024-02655-w
DO - 10.1038/s41380-024-02655-w
M3 - Article
AN - SCOPUS:85197565954
SN - 1359-4184
VL - 30
SP - 50
EP - 60
JO - Molecular Psychiatry
JF - Molecular Psychiatry
IS - 1
M1 - 331
ER -