Signal estimation with binary-valued sensors

Le Yi Wang, Gang George Yin, Chanying Li, Weixing Zheng

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    This paper introduces several algorithms for signal estimation using binary-valued output sensing. The main idea is derived from the empirical measure approach for quantized identification, which has been shown to be convergent and asymptotically efficient when the unknown parameters are constants. Signal estimation under binary-valued observations must take into consideration of time varying variables. Typical empirical measure based algorithms are modified with exponential weighting and threshold adaptation to accommodate time-varying natures of the signals. Without any information on signal generators, the authors establish estimation algorithms, interaction between noise reduction by averaging and signal tracking, convergence rates, and asymptotic efficiency. A threshold adaptation algorithm is introduced. Its convergence and convergence rates are analyzed by using the ODE method for stochastic approximation problems.
    Original languageEnglish
    Pages (from-to)622-639
    Number of pages18
    JournalJournal of Systems Science and Complexity
    Volume23
    Issue number3
    DOIs
    Publication statusPublished - 2010

    Fingerprint

    Dive into the research topics of 'Signal estimation with binary-valued sensors'. Together they form a unique fingerprint.

    Cite this