Abstract
Regional vegetation-climate modelling studies have typically focused on boreal or temperate ecosystems in North America and Europe, almost completely overlooking tropical ecosystems. We present the first results of simulated regional vegetation-climate dynamics in Middle America as simulated by the model, LPJ-GUESS. The Kappa statistic indicated poor agreement, with a Kappa value of 0.301. When we modified the Kappa statistic by aggregating cell sizes and using generalized biomes, the Kappa value increased to 0.543, indicating a fair agreement. Total LAI simulated from LPJ-GUESS was strongly correlated to remotely sensed LAI values (r = 0.75). Our simulations indicate that fire frequency was overestimated in tropical moist forests and underestimated in savannas. This underestimation of fire resulted in an over-simulation of dry tropical forest at the expense of savanna. We highlight additional reasons for the initially poor representation of vegetation in Middle America, including factors such as non-parameterized plant functional types (desert shrub, cacti, and other succulents), rugged topography, and an insufficient representation of soil.
Original language | English |
---|---|
Pages (from-to) | 567-577 |
Number of pages | 11 |
Journal | Biotropica |
Volume | 45 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- United States
- arid regions
- ecosystems
- forest fires
- plants
- tropics