Simulation of various damage scenarios using finite element modelling for structural health monitoring systems

V. V. Nguyen, J. Li, Y. Yu, U. Dackermann, M. M. Alamdari

Research output: Chapter in Book / Conference PaperConference Paperpeer-review

1 Citation (Scopus)

Abstract

Structural Health Monitoring (SHM) is a developing technology for asset management of structures including bridge assets. A crucial benefit of SHM is its ability to monitor the health status of structures using continuous measurements. As a key in SHM, the application of damage detection algorithms to assess the condition of a structure using vibration measurements can be enhanced by providing structural information under various damaged scenarios, which can be obtained from updated numerical models that realistically represent the in-situ structure. However, the dynamic characteristics of a structure are sensitive to uncertainties of various parameters, including material properties and boundary conditions, which require updating in the Finite Element (FE) model to ensure that the model replicates the actual structure. This study focuses on the development of an FE model for the accurate simulation of a jack arch replica structure of the Sydney Harbour Bridge. An experimental jack arch replica is produced to simulate various damage scenarios for laboratory testing. A matching FE model of the jack arch replica is generated and updated using Genetic Algorithm (GA) based on experimental measurements. Damage is simulated in the updated model and the results are validated using the experimental test results. The successful simulation of damage using updated FE models enables the generation of a large number of damage cases that can be trained into an SHM system to improve its damage detection capabilities.
Original languageEnglish
Title of host publicationMechanics of Structures and Materials: Advancements and Challenges. Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24), Perth, Australia, 6-9 December 2016
PublisherCRC Press
Pages1541-1546
Number of pages6
ISBN (Print)9781138029934
Publication statusPublished - 2017
EventAustralasian Conference on the Mechanics of Structures and Materials -
Duration: 6 Dec 2016 → …

Conference

ConferenceAustralasian Conference on the Mechanics of Structures and Materials
Period6/12/16 → …

Fingerprint

Dive into the research topics of 'Simulation of various damage scenarios using finite element modelling for structural health monitoring systems'. Together they form a unique fingerprint.

Cite this