Skill level classification in basketball free-throws using a single inertial sensor

X. Guo, Ellyn Brown, P. P. K. Chan, R. H. M. Chan, Roy T. H. Cheung

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Wearable sensors are an emerging technology, with growing evidence supporting their application in sport performance enhancement. This study utilized data collected from a tri-axial inertial sensor on the wrist of ten recreational and eight professional basketball players while they performed free-throws, to classify their skill levels. We employed a fully connected convolutional neural network (CNN) for the classification task, using 64% of the data for training, 16% for validation, and the remaining 20% for testing the model’s performance. In the case of considering a single parameter from the inertial sensor, the most accurate individual components were upward acceleration (AX), with an accuracy of 82% (sensitivity = 0.79; specificity = 0.84), forward acceleration (AZ), with an accuracy of 80% (sensitivity = 0.78; specificity = 0.83), and wrist angular velocity in the sagittal plane (GY), with an accuracy of 77% (sensitivity = 0.73; specificity = 0.79). The highest accuracy of the classification was achieved when these CNN inputs utilized a stack-up matrix of these three axes, resulting in an accuracy of 88% (sensitivity = 0.87, specificity = 0.90). Applying the CNN to data from a single wearable sensor successfully classified basketball players as recreational or professional with an accuracy of up to 88%. This study represents a step towards the development of a biofeedback device to improve free-throw shooting technique.
Original languageEnglish
Article number5401
Number of pages10
JournalApplied Sciences
Volume13
Issue number9
DOIs
Publication statusPublished - May 2023

Open Access - Access Right Statement

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Skill level classification in basketball free-throws using a single inertial sensor'. Together they form a unique fingerprint.

Cite this